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I S S U E  B R I E F

CLIMATE CHANGE AND FISHERIES:  
MANAGING FOR RESILIENCE
Climate change is rapidly altering our oceans. As the marine environment grows warmer, 
more acidic, and lower in oxygen, the impacts on marine life have been dramatic, including 
on the fish populations that support our productive fisheries. Some fish stocks are moving 
away from their former habitats to stay within their preferred temperature conditions. 
Others that are less able to move or adapt are declining altogether. Changing ocean 
conditions, more frequent extreme weather events, changes in prey availability, and 
disrupted reproductive cycles will make it more difficult for some fish stocks to thrive or 
maintain their numbers. In many cases, climate change is imposing new stressors on fish 
populations that are already stressed by fishing activities. 

©
 Jeff

 W
ickett/N

orthlight P
hotography via U

S
FS

This period of upheaval will cause instabilities in the marine 
ecosystems that support our rich fisheries. This will lead to 
social and economic disruptions in fishing communities as 
they lose historical resources.

In the face of this rapid environmental change, maintaining 
or increasing fish population resilience will be critical for 
securing sustainable fisheries. Fish population resilience is 
the ability of a fish stock to remain viable and persist over 
time in the face of environmental variation and change. 
Fishing activity tends to reduce the resilience of fish 
populations by eliminating older age classes and decreasing 
genetic variation. The combined effects of climate change 
and fishing pressure can generate harmful synergies that 
pose an unacceptable risk to a fishery. Climate change can 
cause previously sustainable management strategies to 
fail, and fishing pressure can make it more difficult for fish 
populations to withstand or adapt to climate change. But with 
more attention to attributes that enhance resilience, these 
risks can be reduced. 

This issue brief describes approaches and potential policies 
to better integrate population resilience into fisheries 
management, with the goal of maintaining viable fish stocks 
and healthy fisheries into the future. Note that population 

resilience is different from ecosystem resilience, which 
refers to the ability of an entire ecosystem to resist, recover 
from, or adapt to disturbances and changes.1 Population 
resilience focuses solely on a population of organisms—fish, 
in this case. This policy brief focuses on the federal fisheries 
management framework of the Magnuson–Stevens Fishery 
Conservation and Management Act. 

Sunrise over fishing boats moored in Thomsen Harbor in Sitka, Baranof Island, 
Alaska.



Page 2	 	 CLIMATE CHANGE AND FISHERIES: MANAGING FOR RESILIENCE 	 NRDC

RESILIENCE IN FISH POPULATIONS
Resilience generally means the ability of a system to maintain 
or return to a stable state or set of characteristics in the face 
of disturbance.2 Scientists recognize different components of 
resilience, such as the resistance of a system to disturbance, 
the system’s likelihood of recovery from disturbance, and 
the rate of recovery following the disturbance.3 Ecologists 
measure resilience with various metrics such as resistance—
or the amount of change following disturbance—the speed 
at which the population recovers to its original state, and 
variability in population size over time.4 

There are several concrete characteristics of populations 
that tend to support resilience in a population, including large 
population sizes, intact age structure, genetic and phenotypic 
variation, and broad geographic distribution. 

LARGE POPULATION SIZE 
Overall biomass or abundance level is important to 
population resilience. Larger populations generally maintain 
greater genetic diversity.5 They also are more likely to have 
diverse responses to environmental variation—whether these 
responses result from fish of different age groups, genotypes, 
phenotypes, or physical locations, as discussed below. 
Populations containing a diversity of individuals are more 
resilient to climate and other human-related disturbances 
because in such a system, there is a higher chance that at 
least some individuals will survive and reproduce. This 
is known as the “portfolio effect,” a term borrowed from 
investors who diversify their holdings to buffer against 
market swings.

AGE STRUCTURE—INCLUDING BIG, OLD, FERTILE FEMALES 
An intact or well-distributed age structure tends to help 
populations resist or recover from disturbances. Older 
spawning fish—sometimes referred to as “big, old, fertile 
females”—are likely to have more and higher-quality babies.6 

Also, older fish can spawn at different times, which can 
diversify the population’s reproductive effort and help ensure 
success in the face of varying environmental conditions.7 
Finally, each age class in a population has encountered, and 
succeeded under different environmental conditions. Having 
cohorts of three-, five-, and seven-year-old fish, for example, 
guarantees that there are more “environmental histories” in 
the population, and this can provide a buffer to environmental 
fluctuations, stabilizing fishery productivity over time.8

GENETIC AND PHENOTYPIC DIVERSITY 
Genetic diversity, which is the variation in genes underlying 
traits, increases the probability that a population will be able 
to adapt to environmental changes over time.9 Phenotypic 
diversity refers to the variety of observable traits that 
individuals in the population display and encompasses 
everything from size and morphology to behavior. A 
wide range of phenotypes can help a population weather 
environmental changes, as some may be less affected by a 
change or disturbance than others.10 
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BIOLOGICAL VARIATION: A SOURCE OF RESILIENCE

GENOTYPE: The set of genes carried by an individual in a 
species. Genetic diversity within a population refers to the range 
of differences across the genotypes of individuals in the same 
population.

PHENOTYPE: An observable characteristic about an individual in a 
species, such as coloration, growth rate, size and age at maturity, 
or spawning patterns. A phenotype is determined by genes and the 
environment’s influence on those genes. Phenotypic diversity is a 
measure of the variation of phenotypes within a population.

An illustration of the different colorations of cod against a background of DNA, 
representing biodiversity among fish.

An illustration showing the increase in reproductive capacity of adult female 
sheepshead as they age and grow larger.



Page 3	 	 CLIMATE CHANGE AND FISHERIES: MANAGING FOR RESILIENCE 	 NRDC

SPATIAL STRUCTURE AND CONNECTIVITY
Meta-populations, made up of spatially separated but 
reproductively connected populations, can help buffer 
the impacts of disturbances on the overall population by 
providing diverse responses to environmental variation or 
helping to replenish populations that have suffered declines.11 
A large geographic range also can promote resilience and 
tends to be associated further with phenotypic and genetic 
diversity.12  

CLIMATE CHANGE INCREASES THE NEED FOR 
POPULATION RESILIENCE
The natural environment is not static, and to persist, fish 
populations have always had to be resilient (see text box, 
“Variation: Cycles, Variance, and Unidirectional Change,” 
below). Climate change, however, dramatically raises the 
stakes for population resilience. Greenhouse gas emissions 
are causing persistent, unidirectional changes in ocean 
temperature, oxygen level, salinity, pH, circulation patterns, 
primary productivity, ecosystem structure, and trophic 
interactions, among other things.13 Climate change also is 
leading to an increased frequency and severity of extreme 
weather events, such as marine heat waves.14 While the 
effects of climate change will vary widely across regions and 

species—and in some cases may even enhance population 
growth—climate change generally is bringing increased 
environmental disturbance and change to which fish 
populations must recover and adapt in order to persist.

CYCLES, VARIATION, AND UNIDIRECTIONAL CHANGE

Earth’s climate naturally changes in cycles spanning decades to 
millennia due to irregularities in its orbit, changes in incoming 
solar radiation, and ocean and atmospheric circulation patterns, 
among other things. These cyclical changes operate at the global 
to regional scales, driving observable, large-scale trends in 
environmental conditions.15 At a smaller scale, any given location 
on Earth (including the oceans) will experience some variation 
in conditions from one year to the next due to the complexity of 
the overall climate system.16 This kind of interannual variation is 
superimposed on the cyclical changes that operate at regional and 
global scales. 

Cyclical change and background variation are nondirectional forms 
of environmental change. In other words, over the long term they 
do not trend in one particular direction (e.g., steadily warmer or 
steadily cooler). By contrast, climate change is a directional change 
globally: Human greenhouse gas emissions are driving a steady and 
progressive increase in global temperatures.17 
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The geographic ranges of fish populations are already shifting 
as a result of warming ocean temperatures; fish are moving 
poleward and farther offshore as they try to stay within 
the thermal conditions for which they are adapted.18 This 
geographical change can put populations under a great deal of 
pressure: It can require them to chart new seasonal migration 
routes; change habitats; and feed and spawn under conditions 
with altered timing, new currents, and potentially new 
predators or prey species. Genetic and phenotypic diversity 
is crucial for fish populations’ ability to thrive and adapt 
during these transitions.19 Abundance also becomes critically 
important, as reproduction and growth rates may be altered 
in the transition and the population may have to withstand a 
period of reduced productivity.20

Whether our fish populations are able to succeed in the face 
of climate change will depend on their resilience. Robust 
populations with greater phenotypic and genetic diversity 
will exhibit a range of responses to environmental change 
and will therefore be more likely to remain viable over time.21 
Fish populations with degraded resilience, by contrast, will 
be more likely to experience reproductive failures, population 
decline, range fragmentation, and even local extinction. 

FISHING CAN REDUCE POPULATION RESILIENCE
Recurring harvest can lead to significant changes in a 
natural population of fish. Fishing activity selects for specific 
individuals within a population—usually relatively large 
adults—and removes them at what is often a high rate 
compared with natural mortality.22 In some cases, fishing can 
remove over half of the adults in a population every year.23 
This repeated removal of selected individuals can alter a 
population in many ways that tend to reduce its resilience.

Age Structure: Harvested populations tend to have 
truncated age structures, with the older age classes either 
eliminated or significantly reduced.24 Larger, older fish 
generally are more fecund, have higher-quality offspring 
and longer and more flexible spawning seasons, and are 

better able to migrate to suitable habitats. Loss of these fish 
can result in reduced reproductive potential and increased 
fluctuations in abundance for a population, as well as 
diminish diversity in the form of older individuals.25 

Genetic and Phenotypic Diversity: The persistent 
removal of individuals from a population can act as a 
selection pressure and lead to permanent loss of genetic or 
phenotypic variability within the population.26 Phenotypic 
characteristics like size or age at maturity, growth rate, or 
maximum size tend to show reduced diversity in harvested 
populations.27 Narrowed phenotypic diversity from fishing 
can limit a population’s ability to spread risk across multiple 
phenotypes, which is an important element of resilience.28 
And reduced genetic diversity as a result of selective pressure 
from fishing can curtail a population’s ability to adapt over 
time—perhaps the most critical element of resilience in the 
long run.29
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The distribution of Black Sea 
Bass biomass in 1972 and 2019. © Brenda Gillespie/chartingnature.com

Fresh caught halibut being unloaded from a fishing boat in Alaska.
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Behavioral Changes: Through repeated harvesting that 
changes the genetic makeup of a fish population, fishing 
can alter foraging and reproductive behavior.30 In one 
laboratory study, repeated harvesting of fast-growing 
individuals induced changes in the willingness of Atlantic 
silversides to forage and in their response to predation, 
reducing the capacity of the population to reproduce and 
recover.31 Behavioral changes induced by fishing can affect 
the resilience of a population, through altered population 
dynamics or increased vulnerability to external threats or 
stressors. 

Spatial Structure and Connectivity: Fishing pressure 
can alter a population’s spatial structure in a number of 
ways, including range contraction or reduced connectivity 
across the population’s range.32 Atlantic cod in the Gulf of 
Maine provide an example: Scientists have learned that the 
population historically had a complex spatial structure, 
with a number of distinct subpopulations, but some of those 
subunits have likely been extirpated due to fishing mortality.33 
Because spatial complexity can provide an important 
buffering function for populations, exploited fish populations 
with altered spatial structures may be weakened in their 
ability to recover from and adapt to environmental change.34 

Overall, the changes induced in a fish population by fishing 
tend to make it harder for that population to resist or recover 
from disturbances or adapt to environmental change.35 

FAILURES WHEN CLIMATE CHANGE IS COMBINED  
WITH FISHING PRESSURE
Because climate change is dramatically increasing the pace 
and intensity of environmental variation, exploited fish 
stocks face an increasing risk of population declines.36 There 
are many ways this can occur, given the breadth of impacts 
that both fishing and climate change can have on a population.

In some cases, managers who implement strategies to ensure 
fishery sustainability may inadvertently allow overfishing 
because environmental change is not being taken into 
account. Fish populations encountering strong climate change 
impacts may be more vulnerable to fishing pressure and may 
be driven to collapse with what were previously sustainable 
levels of fishing mortality.37 As one recent scientific study 
noted, “The more quickly the environment shifts, the less 
harvesting it takes to drive the population extinct.”38 This 
type of breakdown has occurred in the past and is likely to 
occur more frequently in the future under climate change. 

In other cases, a population will need to shift its geographic 
range in order to stay within its preferred thermal envelope 
(or other form of habitat such as salinity or oxygen 
availability). Fishing pressure can inhibit colonization and 
range expansion when fishermen accidentally catch—or 
begin to target—fish as they move into an area.39 As a result, 
fishing pressure can inhibit the ability of a population to 
shift its range, which in turn may result in a fish stock being 
effectively left behind by shifting ocean conditions.40 Such a 
population, pushed beyond its ability to adjust, will decline, 
as reduced rates of growth and reproduction fail to keep pace 
with mortality.

In addition to range shift, fish populations can adapt to 
changing conditions through evolutionary processes. Climate 
change will strain their thermal, oxygen, and pH tolerances, 
thereby imposing a strong selective pressure. Because fishing 
mortality can reduce genetic and phenotypic diversity, it may 
reduce the ability of some stocks to adapt to new conditions.41 
As with the stocks unable to shift range, these populations 
will slide into decline over time as they lose their viability.

Climate change and fishing pressure each pose significant 
challenges to fish populations; when combined their impacts 
are multiplied. In some cases, these synergistic impacts could 
cause long-term or permanent harm to U.S. fishery resources, 
like the collapses of North Atlantic cod populations in the mid 
to late 20th century. 

CAREFUL MANAGEMENT CAN HELP EXPLOITED 
POPULATIONS STAY RESILIENT
To protect population resilience, scientists have identified 
three broad management strategies: maintain large fish 
populations, promote balanced age distributions, and 
preserve phenotypic and spatial diversity. 

As discussed above, maintaining large fish populations 
is important both because abundance directly affects a 
population’s ability to withstand disturbance and because 
a large population size can increase genetic and phenotypic 
diversity.42 Maintaining fish population abundance is the 
primary goal of traditional fisheries management. Climate 

A data image of planet earth showing the monthly average sea temperature in the 
north Pacific Ocean for May 2015. 
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change simply makes it more important to keep managed 
fish populations at healthy levels and to rebuild those whose 
numbers have dropped too low. Managers as a result may 
want to consider accelerated reductions to fishing mortality 
for rebuilding stocks, ongoing modest fishing mortality 
reductions for healthy stocks, or the adoption of guidelines 
(or harvest control rules) that allow quick response to 
changing environmental conditions—all of which are 
consistent with the current federal fisheries management 
framework.43 

Maintaining a balanced age structure can be approached in a 
number of ways, including through fishing gear modification, 
size or slot limits, or protected areas.44 By modifying gear, 
fishermen can increase the selectivity of their harvest, 
avoiding specific size classes of fish. However, this solution is 
fishery-specific, and its viability depends on practical factors 
like spatial patterns of age classes, gear escape mechanisms, 
and so forth. Slot limits work by permitting harvest of only 
medium-size fish and can be effective in fisheries where 
catch and release is an option (i.e., where post-capture 

mortality is low), like lobster and crab fisheries or sometimes 
recreational fisheries.45 Protected or closed areas can be 
difficult to establish but are regarded by some scientists as 
the most effective strategy to preserve large, old individuals 
within a population, particularly demersal species with high 
site fidelity.46 Large, old individuals have great value in the 
population because they can diversify reproductive patterns 
and increase overall productivity, laying abundant, high-
quality eggs that spill beyond the boundaries of the protected 
area.47 

Attempts to manage phenotypic diversity depend on the 
ability to identify distinct characteristics or subpopulations 
within a population and manage them separately. For 
example, if a population contains subcomponents with 
different spawning locations and times, as is the case 
with some salmonids, this can enable more fine-grained 
management.48 When the differences are difficult to 
observe directly, genetic information can help to identify 
subcomponents within a population, as has been done with 
Atlantic herring.49 

A school of fish swimming over an eelgrass bed in Channel Islands National Marine 
Sanctuary, California.

Alaska Fisheries Science Center (AFSC) scientist Chris Wilson holding a 38 inch 
ruler above a massive shortraker rockfish caught off Unalaska Island, Alaska, and 
delivered to the Fisheries Monitoring and Analysis Division (FMA) Wet Laboratory.

©
 R

obert S
chw

em
m

er/N
O

A
A

©
 K

arna M
cK

inney/N
O

A
A

 Fisheries

TRADITIONAL FISHERIES MANAGEMENT: FOCUS ON BIOMASS

Western fisheries management historically focuses on biomass or abundance as the primary metric of stock health. Stock assessments 
are used to evaluate the quantity of fish in the water and determine an amount of biomass that can be sustainably removed by the fishery. 
Removals are regulated via total allowable catch limits, and biomass levels are maintained, if necessary, through rebuilding procedures that 
temporarily reduce catch.50 

Many of the characteristics necessary for population resilience, like phenotypic and genetic diversity, are simply ignored. Some resilience 
characteristics, like foraging or reproductive behavior, may be analyzed through academic or government research, but the information is rarely 
incorporated into stock assessments or management. Characteristics like age structure may be incorporated into stock assessments, but even 
then they have no direct impact on management except insofar as they influence the eventual estimates of biomass, productivity, and allowable 
catch. 

Traditional fisheries management essentially relies on a simplified approach to resilience, assuming that a population will have a relatively high 
resilience so long as its biomass is maintained at a relatively high level. The problem is that while a large population size is indeed important for 
resilience, it is not always sufficient on its own; things like balanced age structure, population structure across the seascape, and phenotypic 
diversity play critical roles too. Moreover, in practice, managers may struggle to actually maintain biomass at desired levels.51 As a result, 
traditional fisheries management has run into problems with resilience in the past.
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Once phenotypic diversity is identified, management 
generally consists of time- and/or area-based measures. Time 
and area closures can be designed around life events, like 
spawning closures that encompass a wide range of spawning 
times. Area-based management also can be used to ensure 
that a population is protected across distinct environmental 
regimes or conditions, to maintain both phenotypic and 
genetic diversity.52 And in the context of shifting stocks, area 
management also can include range-margin policies like 
prohibiting fishing at the outer edges of a population’s range 
to preserve any diversity that exists in trailing or leading-
edge populations.53 

POLICY RECOMMENDATIONS
Fishery managers and policymakers can take tangible steps 
now to protect the resilience of our nation’s managed fish 
populations. We provide several recommendations for 
actions that fishery managers and the federal fisheries 
agency can take under their existing authority, as well as 
recommendations for changes to the federal law to drive 
needed reforms.

FISHERY MANAGERS: START CONSIDERING AND MANAGING  
FOR POPULATION RESILIENCE
The first movers in federal fishery management under the 
Magnuson−Stevens Fishery Conservation and Management 
Act are the eight Regional Fishery Management Councils.54 
The councils make the year-in, year-out management 
decisions about how much to catch, when and where fishing 
can take place, what gear can be used, and more. They have a 
range of staff and advisers including Scientific and Statistical 
Committees (SSCs), as well as support from the National 
Marine Fisheries Service (NMFS).

With climate change already upon us, the councils can and 
should launch concerted efforts to evaluate the population 
resilience characteristics of the managed stocks in their 
regions. This work can be done under current law and with 
existing information.

Specifically, the councils should ask their scientific advisers 
and NMFS for all available quantitative and qualitative 
information on age structure, genetic and phenotypic 
diversity, spatial structure and connectivity, and a synthesis 
of what that information implies about the resilience of 
managed stocks. They further should review how climate 
change is affecting the fish stocks in their regions—are they 
undergoing range shift, responding to changed chemistry or 
ocean currents, showing evidence of new food web dynamics, 
or experiencing other changes? Councils should ask NMFS 
and their SSCs which resilience characteristics are going to 
be most important for each of their managed stocks.

After reviewing the information, the councils should work 
with their scientific advisers and NMFS to develop ways 
to manage stocks for population resilience. This will be an 
iterative process that takes time, and it will depend on the 
specifics of the situation. But with engagement and attention 
from managers it is possible. It also need not require an 
overwhelming amount of work: Councils can start by focusing 
first on the most climate-vulnerable species in their regions 
(see text box, “Climate Vulnerability,” below) using NMFS’s 
available climate vulnerability assessments. 

CLIMATE VULNERABILITY

Definitions vary, but climate vulnerability generally can be thought 
of as the likelihood of a population being adversely affected by 
climate change.55 More specifically, scientists often look at two 
different components of vulnerability: a population’s exposure to 
climate-related stresses, and its sensitivity to those stresses.56 

Recently NMFS has developed a peer-reviewed methodology for 
quantifying the climate vulnerability of marine species, using 
the exposure + sensitivity approach.57 The agency has applied 
this methodology to produce regional assessments of climate 
vulnerability for managed species in the Northeast, Alaska, and 
the West Coast.58 These assessments can and should be used to 
prioritize management efforts.

NMFS: PROVIDE GUIDANCE AND SUPPORT ON MANAGING  
FOR POPULATION RESILIENCE
As the federal agency charged with interpreting and 
implementing the Magnuson−Stevens Act, NMFS can take 
several key steps to promote population resilience under 
current law.

First, the agency should clarify that the Magnuson−Stevens 
Act already requires fish stocks to be managed for population 
resilience. The central provision of the act, National Standard 
1, requires managers to avoid overfishing and “achiev[e], on a 
continuing basis, the optimum yield” from each fishery.59 The 
ongoing and long-term nature of this mandate necessitates 
that fish stocks be managed for population resilience, because 
a fish stock with degraded resilience will eventually fail in 
the face of environmental change. Phrased differently, it 
is not reasonable to assume that fish stocks with degraded 
population resilience will be able to provide optimum yield 
“on a continuing basis.” 

A commercial fishing boat in New Bedford outer harbor, Massachusetts.
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Second, NMFS should develop guidance to help the Fishery 
Management Councils evaluate and manage for population 
resilience. NMFS has taken initial steps with vulnerability 
assessments and technical memoranda; however, further 
guidance is needed at an applied level for councils and 
regional offices to actually operationalize management 
approaches.60 Specifically, the agency should develop 
methods and approaches for evaluating the population 
resilience of a managed fish stock, using existing information 
such as age, size, growth patterns, exploitation and depletion 
levels, spatial information, and any genetic or phenotypic 
information that may be available. Then NMFS should 
set forth a range of management options for improving 
population resilience. The key is to build approaches and 
management options flexibly around available information, 
rather than design idealized concepts that may be difficult to 
implement given imperfect information.

Third, NMFS should provide resources and staff to assist the 
councils in assessing the resilience of their managed stocks 
and applying resilience concepts to management. National 
guidance will require implementation at the regional level, 
and NMFS will need to assist the councils with both funding 
and staffing to translate guidance concepts into applied, 
stock-based management policies. Staff and funding also 
will be critical in helping the councils initially evaluate the 
resilience of their managed stocks—that is, get the lay of 
the land at the outset so they can improve upon current 
management conditions. 

While not the focus of this issue brief, it should also be 
noted that ecosystem-based fisheries management (EBFM) 
is a critical part of promoting resilient fish populations. 
EBFM is an integrated approach that considers and accounts 
for interactions of managed fisheries with other species 
and promotes resilience at the ecosystem level.61 NMFS 
should ramp up implementation of EBFM by reinvigorating 
management under existing policy tools, such as the EBFM 
Policy Road Map and Regional Action Plans.62

CONGRESS: CONSIDER AMENDING THE LAW TO PROMOTE  
POPULATION RESILIENCE
While the Magnuson−Stevens Act already implicitly relates 
to the concept of population resilience, Congress should 
consider amending the law to explicitly address the issue and 
center it in the fisheries management framework. Doing so 
would underscore the urgency of promoting and restoring 
population resilience and keeping our nation’s fish stocks 
sustainable in the face of climate change. There are a few 
ways Congress could do this.

Add a Broad Mandate for Resilience: An important 
starting point would be to add an explicit mandate for 
population resilience to the law, complementing the implicit 
mandate that already exists in National Standard 1. An 
explicit mandate could take any of several forms, but one 
approach would be to add population resilience to the Fishery 
Management Plan (FMP) requirements found in Section 303 
of the act. A new subsection could be added to Section 303 
with a mandate on population resilience, or resilience could 
be added to the core requirement for “conservation and 
management” in Section 303(a)(1)(A).63 This latter approach, 
included in legislation introduced in the 117th Congress, has 
the advantage of making resilience an explicit requirement 
while still giving the councils and NMFS flexibility in how to 
approach the issue.64

Require NMFS to Issue Guidance on Resilience: Enacting 
a broad mandate for fish stock resilience likely would spur 
NMFS to issue guidance, but if Congress wanted to be certain, 
it could instruct the agency to do so. This approach is used 
regularly in the Magnuson−Stevens Act context and could be 
a way for Congress to show its interest in and intention to 
promote population resilience.65

Provide Scientific Advice to the Councils on Promoting 
Resilience: Another effective building block of resilience-
oriented management would be to require the SSCs to 
provide scientific information and advice to their councils 
on the resilience of managed fish stocks in the region. This 
could be done by adding population resilience to the list of 
topics in Section 302(g)(1)(B), which sets forth the subjects 
about which SSCs must provide advice to the councils.66 If 
more detail were needed, Congress could specify the level of 
granularity (e.g., on a stock-by-stock basis) or the frequency 
with which such advice must be given (e.g., each time a new 
stock assessment is completed), or it could provide more 
detailed instructions on the type of analysis to be completed 
and provided to the councils (e.g., examining the impact of 
fishing mortality on the stock’s resilience characteristics and 
comparing this with the impacts of climate change on the 
stock). In general, providing usable and specific information 
on population resilience would help the councils make 
management decisions that promote resilience.

Add Population Resilience to the Act’s Findings, 
Purposes, and Policy: The Magnuson−Stevens Act starts 
with a recitation of Congress’s findings, purposes, and policy 
with respect to marine fisheries management.67 This section 

A commercial fishing boat in New Bedford outer harbor, Massachusetts.
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of the act could be amended to state a clear congressional 
policy to restore and protect population resilience for all 
managed stocks, and a finding that such management is 
urgently needed in light of climate change. While amending 
the act’s findings, purposes, and policy section does not 
change the operative management framework, it does serve 
to raise awareness and make clear that NMFS and the 
councils should be paying attention to population resilience. 

Require Specific Actions to Address Resilience: A 
more concrete approach would be to provide one or more 
direct requirements for NMFS or the councils to take certain 
management actions. These could include monitoring 
and restoring age structure, using annual catch limits to 
promote resilience, or using time/area management practices 
and protected areas. If Congress were to provide direct 
requirements like these, it would need to consider which 
stocks the requirements would apply to (e.g., all managed 
stocks or only the most climate-vulnerable ones) and how 
the requirements would be implemented, given existing 
information levels and management structures in the 
different regions.

CONCLUSION
To keep pace with a rapidly changing ocean and secure 
healthy fisheries into the future, we must acknowledge 
fishery population resilience as a foundational component 
of fishery management. Long an important concept in 
ecology, resilience should increasingly inform on-the-water 
management efforts given the stressors associated with 
climate change. Moving beyond the Magnuson−Stevens 
Act framework’s emphasis on fishery biomass, managers 
already have authority to place additional emphasis on 
promoting resilience, such as by maintaining large fish 
populations, promoting balanced age distributions, and 
preserving phenotypic and spatial diversity. Additional 
resources and technical guidance will be required, however, 
to operationalize resilience-focused management strategies 
across fisheries and regions. The councils, NMFS, and 
policymakers in Congress must each give prompt attention 
to promoting resilience as part of climate-ready fisheries 
management. 
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