The EPA’s standards set a limit on power plant pollution in each state. The state carbon pollution limit is expressed in two ways: as a mass-based standard designating a maximum number of tons of carbon dioxide that may be emitted by covered plants and allowing for some load growth over the years; and as a rate-based standard expressed as a number of pounds of CO₂ per megawatt-hour (MWh) of electricity generated from covered plants for each time period. The standards allow each state the flexibility to design its own cost-effective pathway toward a cleaner electricity system. Under a mass-based standard, Michigan would reduce its carbon pollution from both existing and new power plants from almost 69.9 million tons in 2012 to 48.1 million tons in 2030. In limiting its pollution, Michigan will benefit from the expansion of its clean energy sources, adding jobs to its clean energy economy, which grew by 3,600 jobs in 2014 alone.¹ The actions that Michigan takes now will move it toward a healthier, economically productive, clean energy future.

THE EPA’S CLEAN POWER PLAN PROMISES GREAT BENEFITS FOR MICHIGAN AND THE NATION

The Clean Power Plan will reduce the nation’s carbon pollution from fossil-fueled power plants 32 percent below 2005 levels by 2030.² As we curb carbon pollution, the nation will reap major health and environmental benefits, and by 2030 the average household will save about $85 a year on its energy bills.³ Michigan can expect to see more than twice as many days over 90 degrees Fahrenheit in 2084 as there were during the heat wave year of 1988, and Detroit may face more than double the current number of heat-related deaths by the 2080s.⁴ Rising temperatures increase ground-level ozone smog, which makes it hard to get a lungful of air. A Harvard analysis shows that the health benefits of reducing particle pollution and smog from power plants could save 1,900 lives and prevent 450 hospitalizations in Michigan from 2020 to 2030.⁵ By decreasing the impacts of climate change and reducing the burden of health costs associated with power plant pollution, altogether the EPA standards will provide benefits of up to $54 billion in 2030. That includes preventing up to 3,600 premature deaths, 1,700 heart attacks, 90,000 asthma attacks, and 300,000 missed work and school days.⁶ These benefits far outweigh the estimated national compliance costs of $8.4 billion in 2030.

POLLUATION LIMITS READILY ACHIEVABLE

The EPA set carbon pollution limits for each state’s power plants based on three pollution-reduction approaches, or “building blocks.” However, these blocks are not prescriptive; they are simply the EPA’s method for estimating achievable pollution cuts from power plants. The Clean Power Plan gives states ample flexibility to meet these standards in any way they choose. NRDC encourages Michigan to be creative and think “outside the blocks,” drawing on resources like demand-side energy efficiency. Michigan can now decide on its own path to reduce carbon pollution from power plants in the state—a path that will determine the level of economic, environmental, and public health benefits to Michigan residents.

The adoption of a flexible, market-based framework in combination with complementary state clean energy policies will allow Michigan to cost-effectively meet its carbon pollution limit largely by expanding renewable wind and solar energy and improving the energy efficiency of its homes and businesses.
Figures IA and IC demonstrate the electricity-generation mix and pollution levels as a result of Michigan’s existing clean energy policies and planned retirements (“business as usual,” or BAU). By increasing its energy efficiency to 2 percent annual savings and its renewable standard to 25 percent in 2030, Michigan can achieve its emissions limit, as shown in Figures IB and IC.

FIGURE I: PATHWAY TO MEETING MICHIGAN’S CARBON POLLUTION LIMITS

Michigan is already cleaning up its electricity mix through its existing plans and policies and Michigan can meet its 2030 carbon pollution limit through increased investment in efficiency and renewables.
Several of Michigan’s oldest and dirtiest coal plants (more than 1,400 MW) have already been retired or are slated to be retired or converted to natural gas by 2020. With Michigan’s current clean energy standards, renewable energy will account for 10 percent of the state’s electricity sales by 2015, and energy efficiency programs will reduce energy waste by 1 percent of the previous year’s sales annually, though DTE and Consumers Energy have both far surpassed that target in recent years. As shown in Figure 1A and 1C, these expected changes will result in a cleaner electricity mix, but total emissions will remain above the 2030 mass-based limit of 48.1 million tons. One compliance pathway would be to increase the state’s clean energy goals. By ramping up to a target of 2 percent annual efficiency savings by 2022 and increasing the state RPS to 25 percent by 2030, Michigan can achieve its carbon pollution limits under the Clean Power Plan, as shown in Figures 1B and 1C. However, these compliance pathways are in jeopardy with the introduction of Representative Nesbitt’s House Bill 4297, Senator Proos’s Senate Bill 238, and Senator Nofs’s Senate Bill 237, which threaten the state’s efficiency and renewable standards.

INCENTIVES FOR EARLY INVESTMENTS IN RENEWABLES AND ENERGY EFFICIENCY

Early investments in renewables and energy efficiency can help states comply in two ways. First, in a rate-based policy approach, a power plant can purchase credits from energy efficiency, wind, solar, and other renewable energy projects developed after 2012 and still generating electricity in 2022 and beyond. In a mass-based approach, non-emitting energy efficiency and renewable energy will also contribute to meeting the emissions goal and reduce costs.

In addition, the final Clean Power Plan creates the voluntary Clean Energy Incentive Program (CEIP). The CEIP is designed to recognize emissions reductions that occur before the compliance period begins in 2022. It will allow states to give bonus allowances or credits—which have monetary value—to qualifying renewable electricity generation and energy efficiency investments in low-income communities in 2020 and 2021. Renewable energy and energy efficiency projects are eligible if they are initiated after the state submits its complete state plan—creating an incentive for states to complete their plans early.

PRIMARY POLICY OPTIONS

States can pick from a number of policy approaches to reduce carbon pollution. The following are key conclusions from extensive analyses of state plan options under the Clean Power Plan.

- Significant pollution reductions can be achieved at very low cost with energy efficiency and renewable energy. Energy efficiency is a smart and cost-effective option, and these clean energy investments have been found to reduce customers’ energy bills. Policymakers should supplement a market-based approach with state clean energy policies—like the policies being threatened by Michigan’s legislature—to drive cost-reduction and economic development benefits, and they should invest revenues from allowances or fees in these zero-carbon, low-cost resources.

- Because regional approaches that create larger trading markets significantly reduce costs, states across the country are exploring regional policy approaches and trading, from developing a regional plan to writing individual plans with common elements and trading across borders. Regional consistency also reduces market distortions and pollution “leakage” across state borders.

- The lowest-cost policy choice is a mass-based approach, as long as the allowance value or permit revenue is paid for by polluters and reinvested for customer benefit.

The best compliance approaches are simple, tested, and low-cost. They have high environmental integrity and are easily interconnected across states and regions. A mass-based approach—paired with essential, complementary clean energy policies—would fulfill all these criteria.
WHAT IS THE CARBON POLLUTION LIMIT FOR POWER PLANTS IN MICHIGAN?

After unprecedented stakeholder outreach and review of millions of public comments, the EPA carefully reconsidered and revised its emissions limits to be more consistent nationally, accounting for the interconnected nature of the electric grid. The EPA set separate, nationally uniform rates for coal and natural gas power plants, treating all plants equally. Michigan’s rate-based limit is based on the share of each of those resources within the state. The final (2030) rate-based emissions limit for power plants in Michigan is 1,169 pounds of carbon dioxide per MWh generated. The EPA provides additional guidance on how to convert rate-based emissions limits into mass-based emissions limits, and NRDC has analyzed compliance with Michigan’s mass-based limit (covering existing and new sources) in Figure 1 on page 2.

Table 1: Carbon Pollution Limits for Michigan Power Plants

<table>
<thead>
<tr>
<th>Period</th>
<th>Rate-based limit (lbs CO_2/MWh)</th>
<th>Mass-Based Limit, All Sources (short tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (2012)</td>
<td>1,928</td>
<td>69,860,454</td>
</tr>
<tr>
<td>Interim Period 2022-2029</td>
<td>1,355</td>
<td>53,680,801</td>
</tr>
<tr>
<td>2030 & Beyond Target</td>
<td>1,169</td>
<td>48,094,302</td>
</tr>
</tbody>
</table>

Figure 2: Carbon Pollution Limits for Michigan’s Power Plants

![Figure 2](image_url)

WHY ARE COMPLEMENTARY POLICIES IMPORTANT IN A MARKET-BASED FRAMEWORK?

As Michigan has demonstrated, clean energy policies can drive economic gain and reduce emissions. While these policies need not be included in a state plan to demonstrate enforceable limits on carbon emissions, they can complement a market-based compliance strategy to ensure the lowest-cost and most effective carbon pollution reductions.

Investment in energy efficiency and renewable energy can provide numerous benefits to customers, including lower wholesale prices, reduced energy bills, and less reliance on volatile fuel markets. These investments can also lower the overall costs and maximize the benefits of a market-based emissions reduction program. A recent analysis of states participating in the Regional Greenhouse Gas Initiative (RGGI) found that net economic benefits and job creation were highest in states with the greatest levels of reinvestment in energy efficiency.
NEXT STEPS FOR MICHIGAN

While states have flexibility to decide on any pollution reduction pathway, some approaches will result in more benefits for the environment, the economy, and electricity customers. Table 2 outlines key decision steps for Michigan to consider as the state designs a plan to meet or exceed the carbon pollution limits for its power plants. These policy options work with many available cost-effective programs that deliver clean energy benefits and keep electricity affordable for everyone, including low-income communities. Prioritizing investment in energy efficiency and renewable energy will keep costs down and avoid overutilizing natural gas.

As Michigan considers the full range of options to reduce carbon pollution from power plants operating in the state, an open and transparent process is essential to crafting a strong state plan that meets all of Michigan’s goals. Robust engagement with the full range of interested stakeholders will ensure that Michigan chooses the best path forward, reducing its reliance on fossil fuels and moving toward a clean energy future.

Table 2: Three key decision steps for developing a state plan

<table>
<thead>
<tr>
<th>Decision Steps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose a rate-based or mass-based approach</td>
<td>Option 1: Rate-based, Blended Rate
Each generator must meet the state-wide emissions limit in pollution per unit of electricity generated (lbs CO2/MWh). Fossil power plants that pollute above the intensity standard must buy credits from generators or efficiency providers that operate below the standard.</td>
</tr>
<tr>
<td>Option 2: Rate-based, Dual Rate
Each generator must meet applicable emissions rate limit (steam or NGCC) in pollution per unit of electricity generated (lbs CO2/MWh). Fossil steam units that pollute above the steam rate must buy credits from new non-emitting resources (including efficiency) or incremental NGCC generation (above 2012 levels). NGCC units can only purchase credits from new non-emitting resources (including efficiency).</td>
<td>Option 4: Mass-based, All Sources (Existing and New)
A state may choose to include new power plants in the mass-based standard, which has the advantage of treating all power plants the same in electric power markets, regardless of when they were built. Under this approach, the limit is adjusted upwards to account for the emissions of new power plants meeting any load growth that was not already covered in the limit for existing sources, above.</td>
</tr>
</tbody>
</table>
| **Opt for an individual state plan or a plan linked with other states** | The state can submit its own individual plan or coordinate with neighboring states on common policy approaches. Regional approaches include both formal multistate plans and agreements to link, such as adopting common elements to facilitate trading. Linkage and trading are likely to be much easier under a mass-based approach. Benefits of regional coordination include:
 - LOWER COST—A larger market is more efficient and reduces costs.
 - IMPROVED ENVIRONMENTAL OUTCOME—Regional approaches avoid different price signals across state boundaries, which also helps avoid emissions leakage and higher-than-anticipated national emissions.
 - STRONGER ELECTRIC GRID—A larger market and additional flexibility reduce concerns about electric grid reliability.
 - EQUAL TREATMENT—Generators, market participants, and customers face more consistent market signals, costs, and benefits. |
| **Formulate state plan details and complementary policies** | In a mass-based approach, the state has to decide how to distribute allowances and either return the value to customers or give away the value to emitters. If pollution allowances are auctioned to emitters, the state will generate revenue that can be reinvested to reduce customers’ electricity bills through energy efficiency investments, rebates, or other state programs.
Complementary measures like clean energy standards and improved utility rate designs can also help address market barriers to investment.
Complementary policies can also address important equity issues for workers in transition, people of color, low-income communities, and others. Complementary policies may include worker retraining, investments in energy efficiency, and direct bill assistance. |
the compliance tool. Generation is not assumed to displace in-state fossil generation in the performed analysis. These new build assumptions can be adjusted in the Interconnection Queue feature of this analysis, building the Fermi 3 reactor would only affect the generation mix and total output levels in Michigan, but not the state’s emissions pathways, because new nuclear assumes that Fermi 3 is constructed and brought online, which is a highly uncertain prospect at this time due to a variety of economic and safety factors. For the purposes of this capacity is necessarily going to be built, in which case Michigan could comply with less displacement of existing in-state fossil generation. The interconnection queue also for simplicity, this analysis assumes all projects in the interconnection queue are built, which would result in nearly doubling Michigan’s NGCC capacity. However, not all of clean energy displaces pro-rata share of coal and gas (based on 2012 levels); new NGCCs run at a capacity factor of 55 percent; the emissions limit covers new power plants.

This tool, designed to perform a simple resource analysis for each state, is available at www.mjbradley.com/about-us/case-studies/clean-power-plan-evaluation-tools. Note: the BAU (blue) and CPP Compliance (green) emissions projections in Figure 1C correspond to the “Achieved” line in the tool for the different scenarios. Other assumptions: clean energy displaces pro-rata share of coal and gas (based on 2012 levels); new NGCCs run at a capacity factor of 55 percent; the emissions limit covers new power plants. For simplicity, this analysis assumes all projects in the interconnection queue are built, which would result in nearly doubling Michigan’s NGCC capacity. However, not all of this capacity is necessarily going to be built, in which case Michigan could comply with less displacement of existing in-state fossil generation. The interconnection queue also assumes that Fermi 3 is constructed and brought online, which is a highly uncertain prospect at this time due to a variety of economic and safety factors. For the purposes of this analysis, building the Fermi 3 reactor would only affect the generation mix and total output levels in Michigan, but not the state’s emissions pathways, because new nuclear generation is not assumed to displace in-state fossil generation in the performed analysis. These new build assumptions can be adjusted in the Interconnection Queue feature of the compliance tool.

3. Ibid.
7. The retirement list for Michigan compiled by the consulting group MJ Bradley & Associates includes the following coal units (1,436 MW total): B.C. Cobb 4 and 5, L.C. Weadock 7 and 8; J.R. Whiting units 1, 2, and 3; Harbor Beach 1; and Presque Isle units 5, 6, 7, 8, and 9. See the Coal section of the MJ Bradley & Associates Compliance tool.
9. The Natural Resources Defense Council has analyzed Michigan’s compliance trajectory using the Clean Power Plan compliance tool developed by MJ Bradley & Associates. This tool, designed to perform a simple resource analysis for each state, is available at www.mjbradley.com/about-us/case-studies/clean-power-plan-evaluation-tools. Note: the BAU (blue) and CPP Compliance (green) emissions projections in Figure 1C correspond to the “Achieved” line in the tool for the different scenarios. Other assumptions: clean energy displaces pro-rata share of coal and gas (based on 2012 levels); new NGCCs run at a capacity factor of 55 percent; the emissions limit covers new power plants. For simplicity, this analysis assumes all projects in the interconnection queue are built, which would result in nearly doubling Michigan’s NGCC capacity. However, not all of this capacity is necessarily going to be built, in which case Michigan could comply with less displacement of existing in-state fossil generation. The interconnection queue also assumes that Fermi 3 is constructed and brought online, which is a highly uncertain prospect at this time due to a variety of economic and safety factors. For the purposes of this analysis, building the Fermi 3 reactor would only affect the generation mix and total output levels in Michigan, but not the state’s emissions pathways, because new nuclear generation is not assumed to displace in-state fossil generation in the performed analysis. These new build assumptions can be adjusted in the Interconnection Queue feature of the compliance tool.