January 17th, 2017

Comments to EPA from Environmental Health Scientists and Healthcare Professionals in support of EPA’s 2016 Revised Human Health Risk Assessment and the 2015 proposed tolerance revocation for chlorpyrifos

Comments submitted to Docket EPA-HQ-OPP-2015-0653-0402
This letter is also available to the public at: https://www.nrdc.org/resources/letter-over-45-scientists-and-health-professionals-supporting-epas-2016-risk-assessment-0

We, the undersigned, write to express our support for EPA’s 2016 Revised Human Health Risk Assessment for chlorpyrifos, and our support of EPA’s 2015 proposal to revoke all food tolerances for this dangerous insecticide. We recommend that EPA finalize these two documents as soon as possible, and revoke all food tolerances of this toxic pesticide. This would prohibit the use of chlorpyrifos on food crops, protecting consumers in the U.S. that will otherwise continue to be exposed to chlorpyrifos through residues on produce (Bradman et al 2015; Lu et al 2006, Vogt et al 2012, EPA 2016 dietary risk assessment).1, 2 Children especially experience greater exposure to organophosphate pesticides due to their increased hand-to-mouth action, and relative to adults they eat more fruits and vegetables, drink more, and breathe more.3

The new 2016 human health risk assessment has several important improvements over the earlier 2014 one. Both the 2014 and 2016 assessments use the PBPK model sponsored by Dow AgroSciences for deriving internal dosimetry measures.4 However, whereas the 2014 assessment used a 10% red blood cell acetylcholinesterase inhibition (RBC AChEi) as a Point of Departure (PoD), in the 2016 assessment EPA followed the recommendations of its Scientific Advisory Panel to address the risks below 10% RBC AChEi because, “epidemiology and toxicology studies suggest there is evidence for adverse health outcomes associated with chlorpyrifos exposures below levels that result in 10% RBC AChE inhibition” (EPA 2016; EPA SAP 2016).

1 A dietary intervention study reported a 60% to nearly complete reduction in concentrations of two OP metabolites (malathion dicarboxylic acid (MDA), and 3,5,6-trichlor-2-pyridinol (TCPy), a metabolite of chlorpyrifos) immediately after starting the organic diet.

2 Residues and risk associated with imported produce, and other imported specialty crops ranging from herbs and spices to tea and coffee, also account for some of the highest risk servings of food and beverages in the U.S. food supply, yet because of EPA’s lack of residue data, these residues and accompanying risk have not been rigorously accounted for in chlorpyrifos dietary risk assessments.

3 Approximately 75% of the general U.S. population had detectable levels of TCPy in the National Health and Nutrition Examination Survey (NHANES) from 2001-2002. Results also showed children ages 6-11 years had concentrations of TCPy (geometric mean 3.48 μg/g creatinine) two times the concentrations detected in adults (geometric mean 1.49 μg/g creatinine) (DHHS 2009). Women living in an agricultural area of California (81% had a family member who was a farmworker) had significantly higher dialkyl phosphate (DAP) concentrations than the levels for women of similar age in the NHANES population (Bradman et al 2005)

EPA summarizes these improvements as follows: “The 2014 revised human health risk assessment used dose-response data on acetylcholinesterase inhibition (AChI) in laboratory animals to derive a point of departure. However, the EPA believes that evidence from epidemiology studies indicates effects may occur at lower exposures than indicated by the toxicology database. The 2016 revised human health risk assessment uses neurodevelopmental effects as the critical effect, taking into account recommendations from the 2016 chlorpyrifos SAP on deriving a point of departure for risk assessment.”5 (EPA 2016)

We agree with EPA. Scientific evidence supporting the SAP statement comes from epidemiologic studies, laboratory toxicologic studies, and mechanistic studies demonstrating that chlorpyrifos is a powerful developmental neurotoxicant. Exposures to even very low doses of chlorpyrifos during critical windows of vulnerability during the nine months of pregnancy has been reported in epidemiologic studies to be associated with lower birth weight and adverse neurodevelopmental effects to children including diminished cognitive ability (lowered IQ) poorer working memory, and delays in motor development (Rauh et al, 2006, 2011, Whyatt et al 2005). In addition, chlorpyrifos has been associated with moderate to mild hand tremor in school age children (Rauh 2012) and with changes in brain structure in a pilot study using magnetic resonance imaging among children ages 6-11 (Rauh 2012).

Prenatal chlorpyrifos exposure from living in close proximity to agriculture fields is associated with autism spectrum disorders (Shelton et al., 2014). A recently published study of Costa Rican children living near banana and plantain farms showed a dose-dependent adverse impairment of working memory in boys, oppositional disorders, ADHD, decreased ability to discriminate colors, and an increased prevalence of cognitive problems in the parents (van Wendel de Joode et al 2016). Rural children and the children of farmworkers are exposed to chlorpyrifos through drift and volatilization (Coronado et al 2011; Bradman et al, 2005; Thompson et al, 2014; Wofford et al, 2014; Calvert et al, 2008). Certain subpopulations demonstrate greater susceptibility such as those who have reduced capacity to detoxify organophosphate pesticides like chlorpyrifos (Engel et al, 2015).

These disruptions in children’s brain development appear to be permanent, irreversible and lifelong (Rauh et al 2015). The epidemiologic results are consistent with data from toxicological studies which found disruption in neuronal development, neurotransmitter systems and synaptic formation as well as behavioral and cognitive impairments in test animals following low-dose perinatal chlorpyrifos exposure (Slotkin 2004; Aldridge et al. 2004, 2005; Slotkin and Seidler, 2005, Levin et al 2001; Roy et al., 2004; Garcia et al., 2002).

Consistent with the SAP recommendations, EPA’s 2016 assessment is much improved by using epidemiologic data from the Columbia Center for Children’s Environmental Health (CCCEH) cohort to inform the derivation of time weighted average blood concentrations to be used as the Point of Departure (PoD) for risk assessment. We strongly support this approach. Making use of these epidemiologic data is essential if EPA is to ensure that its risk estimates reflect the reality of chlorpyrifos toxicity, particularly to nervous system development. As noted in EPA’s 2010 Draft Framework for Incorporating Human Epidemiologic & Incident Data in Health Risk Assessment: “Specifically, these types of human information provide insight into the effects caused by actual chemical exposures in humans and thus can contribute to problem formulation and hazard/risk characterization. In addition, epidemiologic and human incident data can guide additional analyses or data generations (e.g., dose and endpoint selection for use in in vitro and targeted in vivo experimental studies), identify potentially susceptible populations, identify new health effects or confirm the existing toxicological observations.” (EPA 2010) For example, epidemiologic data are used quantitatively in EPA’s evaluation of risks from methylmercury and lead exposures.

By using the CCCEH epidemiologic data to inform the PoD, the new 2016 risk assessment better addresses the elevated risks to vulnerable and sensitive populations from real-world exposures, including levels below those that trigger a 10% RBC AChEi. As EPA itself has concluded the adverse effects seen in epidemiologic research are occurring at doses below those that cause any measurable AChEi (EPA 2014, 2016).

With each year of delay in cancelling food tolerances and agricultural and other uses of chlorpyrifos, more children are unnecessarily at elevated risk for problems in learning, social skills, motor function, and other developmental domains (Raanan et al 2015). As the National Academy of Sciences (NAS) stated in its 2009 report Science and Decisions (page 72): “The design of a risk-assessment process should balance the pursuit of individual attributes of technical quality in the assessment and the competing attribute of timeliness of input into decision-making.” Assessments must – in all but the most exceptional of circumstances – be based on the best available information already at hand. EPA’s review of the risks of chlorpyrifos has already taken nearly a decade; protecting children’s health requires expedient action to remove this pesticide from communities and the food supply.

We strongly urge EPA to finalize its assessment and cancel all remaining uses of chlorpyrifos as expeditiously as possible.

Respectfully,

Jennifer Sass, Ph.D.
Senior Scientist, Natural Resources Defense Council
and Professorial Lecturer, George Washington University

Robin M. Whyatt, DrPH
Professor Emeritus
Department of Environmental Health Sciences
Mailman School of Public Health, Columbia University

Supporters in alphabetical order below:

The views expressed in this editorial are the opinion of the scientists who are listed below and DO NOT imply an endorsement or support for these opinions by any organizations to which they are affiliated.

American College of Occupational and Environmental Medicine
Special Interest Section on Underserved Occupational Populations
Scott Morris

Laura Anderko PhD RN
Robert and Kathleen Scanlon Endowed Chair in Values Based Health Care & Professor Fellow, Center for Social Justice
White House Champion of Change for Public Health and Climate Change
Director, Mid-Atlantic Center for Children’s Health and the Environment (Region 3 PEHSU)
School of Nursing & Health Studies,
Georgetown University, Washington DC

Deborah Bennett, PhD
Associate Professor, Division of Environmental and Occupational Health
University of California, Davis

Paul Brandt-Rauf, DrPH, MD, ScD
Professor Emeritus
Environmental Health Sciences, Mailman School of Public Health
Columbia University, New York, NY

Adelita G. Cantu, PhD, RN
Associate Professor
UT Health San Antonio

Stephanie M. Engel, PhD
Associate Professor of Epidemiology
Gillings School of Global Public Health
University of North Carolina at Chapel Hill, Chapel Hill, NC

Jillian Fry, PhD, MPH
Project Director, Johns Hopkins Center for a Livable Future
Assistant Scientist, Departments of Environmental Health and Engineering and Health, Behavior and Society
Johns Hopkins Bloomberg School of Public Health, Baltimore MD

Eva Galvez, MD
Board of Directors,
Migrant Clinicians Network

Joseph Graziano, PhD
Professor of Environmental Health Sciences and Pharmacology
Columbia University
New York, NY

Robert M. Gould, MD
Associate Adjunct Professor, Program on Reproductive Health and the Environment,
Dept. of Obstetrics, Gynecology and Reproductive Sciences, UCSF School of Medicine;
Past President, Physicians for Social Responsibility

Russ Hauser MD, ScD, MPH
Acting Chair, Department of Environmental Health
Frederick Lee Hisaw Professor of Reproductive Physiology
Professor of Environmental and Occupational Epidemiology
Harvard T.H. Chan School of Public Health
Professor of Obstetrics, Gynecology and Reproductive Biology
Harvard Medical School
Wendy Heiger-Bernays, PhD
Associate Professor of Environmental Health
Boston University School of Public Health
Boston, MA

Irva Hertz-Picciotto
Director, Environmental Health Sciences Center
University of California, Davis

Katie Huffling, RN, MS, CNM
Director of Programs
Alliance of Nurses for Healthy Environments

Jonathan Kirsch, MD, FHM
Assistant Professor, Medicine Hospitalist
Director, Farmworker Health Rotation
Division of General Internal Medicine
University of Minnesota Medical School

Erica Koustas, PhD
Scientific Consultant
UC San Francisco

Candace Kugel, FNP, CNM, MS
Migrant Clinicians Network

Carol F. Kwiatkowski, PhD
Executive Director, The Endocrine Disruption Exchange
Assistant Professor Adjunct
University of Colorado, Boulder

Juleen Lam, PhD, MHS, MS
Associate Researcher
UCSF Program on Reproductive Health and the Environment

Philip J. Landrigan, MD, MSc, FAAP
Dean for Global Health
Professor of Environmental Medicine, Public Health & Pediatrics
Icahn School of Medicine at Mount Sinai

Bruce Lanphear, MD, MPH
Clinician Scientist, Child & Family Research Institute Professor
Faculty of Health Sciences
Simon Fraser University Vancouver, BC
Canada

Robert S. Lawrence, MD, MACP
Founding Director, Center for a Livable Future
Professor Emeritus of Environmental Health & Engineering
Johns Hopkins Bloomberg School of Public Health

Hugo Lopez-Gatell, MD, MSc, PhD
Director, Innovation on Infectious Disease Surveillance and Control
Research Center on Infectious Diseases
National Institute of Public Health,
México

Dave Love, PhD, MSPH
Associate Scientist
Department of Environmental Health and Engineering
Johns Hopkins Bloomberg School of Public Health

Chensheng (Alex) Lu, PhD
Harvard T.H. Chan School of Public Health
Harvard University, Boston

Laszlo Madaras, MD, MPH
Medical Director
Migrant Clinicians Network

Emily Marquez, PhD
Staff scientist, Pesticide Action Network
Oakland, CA

Rob McConnell MD
Professor of Preventive Medicine
Director, Southern California Children’s Environmental Health Center
Keck School of Medicine
University of Southern California, Los Angeles, CA

Keeve E. Nachman, PhD, MHS
Assistant Professor
Department of Environmental Health and Engineering Johns Hopkins
Bloomberg School of Public Health Director, Food Production and Public Health Program Johns Hopkins Center for a Livable Future Co-Director,
Johns Hopkins Risk Sciences and Public Policy Institute

Peter Orris, MD, MPH
Professor and Chief
Occupational and Environmental Medicine
University of Illinois Hospital and Health Sciences System
Chicago, IL

Devon Payne-Sturges, DrPH
Assistant Professor
Maryland Institute for Applied Environmental Health
School of Public Health
University of Maryland, College Park

Frederica P. Perera, DrPH, PhD
Professor of Public Health
Director, Columbia Center for Children’s Environmental Health
Department of Environmental Health Sciences
Mailman School of Public Health
Columbia University, New York

Virginia A. Rauh, ScD.
Professor and Vice Chair, Heilbrunn Department of Population and Family Health
Columbia Center for Children’s Environmental Health
Mailman School of Public Health,
Columbia University, New York

Elena Rios, MD, MSPH
President & CEO, National Hispanic Medical Assoc (NHMA)
Washington, DC

James R Roberts, MD, MPH
Professor of Pediatrics
Director, South Carolina Pediatric Practice Research Network
Medical University of South Carolina
Charleston, SC

Ted Schettler MD, MPH
Science Director
Science and Environmental Health Network

Veena Singla, PhD
Staff Scientist,
Natural Resources Defense Council
San Francisco, CA

Theodore Slotkin, PhD
Professor, Dept. of Pharmacology & Cancer Biology
Duke University Medical Center

Rosemary Sokas, MD, MOH
Professor and Chair
Department of Human Science
Georgetown University School of Nursing and Health Studies

Patrice Sutton, MPH
Research Scientist
Program on Reproductive Health and the Environment
University of California San Francisco, CA

Shanna H Swan PhD
Professor: Environmental Medicine and Public Health
Icahn School of Medicine at Mount Sinai, New York

Gayle B Thomas, MD
Medical Director, North Carolina Farmworker Health Program
Assistant Professor Family Medicine, School of Medicine
University of North Carolina

David Wallinga, MD
Senior Health Officer,
Natural Resources Defense Council
San Francisco, CA

Virginia M Weaver MD MPH
Associate Professor of Environmental Health and Engineering and Medicine
Associate Faculty Member, Welch Center for Prevention, Epidemiology and Clinical Research
Johns Hopkins University Bloomberg School of Public Health
Baltimore, MD

Tracey Woodruff, PhD, MPH
Professor and Director, Program on Reproductive Health and the Environment
Department of Ob/Gyn and PRL Institute for Health Policy Studies
University of California San Francisco, CA

Alan Woolf, MD, MPH, FAAP, FAACT, FACMT
Professor, Harvard Medical School
Director, Pediatric Environmental Health Center –
Boston Children’s Hospital Director,
Region 1 Pediatric Environmental Health Specialty Unit
Harvard University, Boston, MA

Ed Zuroweste, MD
Assistant Professor of Medicine, Johns Hopkins School of Medicine
Co-Chief Medical Officer, Migrant Clinicians Network
REFERENCES:

