Taming the Climate Dragon

February 2006

How global warming works

Temperatures are rising

Source: Karl and Trenberth, 2003.

2005 Surface Temperature Anomaly

Temperature Anomaly (${ }^{\circ} \mathrm{C}$)
http://data.giss.nasa.gov/gistemp/2005/

Carbon deficit spending-Do the math

- Energy carbon emissions in year $2000=6.3$ billion metric tons
- Removal to oceans, soils, trees = 3.1 billion metric tons
- Net buildup in air = 3.2 billion metric tons

Annual Carbon Debt Growth

Pointer $32^{\circ} 14^{\prime} 44.66^{\circ} \mathrm{N}$ 124 $4^{\circ} 28^{\prime} 14.14^{-} \mathrm{W}$
Γ k Lodging $\Gamma \Psi 4$ Dining
$\Gamma ₹$ Roads $\nabla \mathbb{P}$ Borders
－Terrain 「 Buildings （1）（1）

Investments today drive impacts tomorrow

- Investments drive emissions
- Emissions drive concentrations
- Concentrations drive temperature forcing
- Forcing drives impacts

New coal build by decade

Incremental new coal capacity by decade

New coal plant emissions equal all historic coal CO_{2}

Source: ORNL, CDIAC; IEA, WEO 2004

Melting arctic ice

Photo NASA © NRDC 2005

Peril for polar bears

Melting glaciers \& ice sheets

Greenland Ice Sheet Melt

Rising sea levels

- Beach erosion
- Everglades inundation
- Saltwater intrusion
- Storm surge

Data Source: Environmental

1 meter sea level rise

Studies Laboratory, Department of Geosciences, University of Arizona

Data Source: Environmental 6 meter sea level rise Studies Laboratory, Department of Geosciences, University of Arizona

Declining snowpack

Mt. Hood Oregon, August 1984. © Gary Braasch

Source: P. Mote, U. of Washington

Stronger hurricanes

Source: Kerry Emanuel, Nature 436, 686-688 (4 August 2005)

Solutions

The Big Players:

- Energy Efficiency
- Renewable Energy
- CO_{2} Capture \& Geologic Storage

Cutting U.S. emissions in half

After Pacala and Socolow, 2004; ARI CarBen3 Spreadsheet

Cutting U.S. emissions in half

Cutting U.S. emissions in half

Cutting U.S. emissions in half

\square United States Annual Average Wind Power The wind resource is expressed in terms of wind power $\square{ }^{\text {classes, ranging from class } 1 \text { (th }}$ Wind Resources Legend
\square San Gorgonio Pass Wind Array
\square 문 Altamont Pass Wind Farm
\square (3) Tehachapi Wind Farm
$\square \oplus$ Temporary Places

$$
\begin{array}{ll}
\Gamma \text { Lodging } & \Gamma \Psi \text { Dining } \\
\Gamma \nabla \text { Roads } & \nabla 叩 \text { Borders } \\
\nabla \triangleq \text { Terrain } & \Gamma \text { Buildings }
\end{array}
$$

Installed wind capacity

 by state
\square United States Annual Average Wind Power
The wind resource is expressed in terms of wind power
classes, ranging from class 1 (the lowest) to class 7 (the
\square (3) San Gorgonio Pass Wind Array
\square (2) Altamont Pass Wind Farm
\square (3) Tehachapi Wind Farm
\square Temporary Places (1) ©

प8 Layers

- Layers
\checkmark National Geographic Magazine
\square Feature Articles \& Photographs
\square Sights \& Sounds
\square Sights \& Sounds
\square Africa Megaflyo - Google Earth Community Google Earth Community Community Showcase
1 Google Earth Community (Unranked)
Lining
Lodging
$\square צ$ Bars/Clubs

Wind potential

Battelle Wind Energy Resource Atlas: http://rredc.nrel.gov/wind/pubs/atlas/
Ence ©

Satellite data provide the best means of observing sea ice coverage and variability. A variety of remote sensing Greenland
Sea Level Rise $-\square$ Green Buildings.kmz Green Buildings.kmz Green Buildi
\square Current Wind Generating Capacity by State $\square \&$ Wind Capacity Legend
\square United States Annual Average Wind Power The wind resource is expressed in terms of wind power $\square{ }^{\text {classes, ranging from class } 1 \text { (th }}$ Wind Resources Legend
\square (3) San Gorgonio Pass Wind Array
\square (3itamont Pass Wind Farm
\square (3) Tehachapi Wind Farm - Biofuels

- 30 Million Acres (about 47,000 square miles) - \square Alternative Fuels

```
\square\otimes Toyota Tsutsumi Plant (Prius assembled)
``` - \(\square\) BioGems \(\square\) Temporary Places

\section*{Layers}
- प Layers
\(\square\) National Geographic Magazine
\(\square\) Feature Articles \& Photographs
\(\square\) Sights \& Sounds
Africa Megaflyove Google Earth Community Google Earth Community
Community Showcase \(\square\) Community Showcase Dining
\(\square\) Lodging
\(\square\) Banks/ATMs

\begin{tabular}{ll}
\(\Gamma\) Lodging & \(\Gamma \Psi\) Dining \\
\(\Gamma \backsim\) Roads & \(\nabla 叩\) Borders \\
\(\nabla\) Terrain & \(\Gamma\) Buildings
\end{tabular}

\section*{Current Biofuels}

\section*{Cutting U.S. emissions in half}

After Pacala and Socolow, 2004; ARI CarBen3 Spreadsheet

\section*{Energy efficiency: cuts 600 MtC}
- Reduce 2050 electricity demand by 25\%
- Motors and controls
- Lighting
- Refrigeration
- Reduce building \& industry direct fuel use by \(40 \%\) in 2050
- Green building design
- Industrial processes
- Combined heat and power

\section*{Transport efficiency: cuts 475 MtC}
- Passenger vehicles
- 2050 fleet averages 54 mpg, not 24 mpg
- Hybrids
- Fuel cells
- Conventional vehicle improvements
- Other transport efficiency
- Trucks average 13 mpg , not 7 mpg
- Aircraft average 105 smpg, not 80 smpg
- Smart growth reduces travel by \(10 \%\)

\section*{Renewable energy: cuts 325 MtC}
- Wind
- 30\% of electricity generation
- Requires 300,000 2 MW turbines
- Land area of 25 million acres, multiple use
- Biofuels
- 40 billion gallons
- 30 million acres growing 12 tons biomass/acre
- Area equal to Conservation Reserve set aside

\section*{（1）Layers}

四 terrain
\(\checkmark\) National Geographic Magazine
\(\square\) Feature Articles \＆Photographs
\(\square\) Sights \＆Sounds
\(\square\) Africa Megaflyov －Google Earth Community \(\square\) Google Earh Community \(\square\) Community Showcase
\(\square\) Google Earth Community（Unranked）
Dining
围 Banks／ATMs
\(\square צ\) Bars／Clubs

\begin{tabular}{ll}
\(\Gamma\) Lodging & \(\Gamma \Psi V_{\text {Dining }}\) \\
\(\Gamma\) Roads & \(\nabla 叩\) Borders \\
\(\nabla\) Terrain & \(\Gamma\) \\
\end{tabular}

\section*{30 million acres}

\title{
\(\mathrm{CO}_{2}\) capture and storage: cuts 325 MtC
}
- Equip 180 GW of coal with CCS
- \(25 \times\) current \(\mathrm{CO}_{2}\) use for EOR
- \(4 \times\) current natural gas buffer storage flows
- Additional CCS at other stationary sources
- Large industrial facilities
- Natural gas production

\section*{Cleaning up electricity}

\section*{Cleaning up vehicles}

\begin{tabular}{|l|}
\hline A...:Smart growth \\
Alt. Fuel \\
Hybrid \\
Conventional \\
—Emissions \\
\hline
\end{tabular}

\section*{Cutting U.S. emissions in half}

\section*{Biggest \(\mathrm{CO}_{2}\) emitters 2000-2025}

\section*{Warming won't wait. Will we?}

\section*{More information: www.nrdc.org}

\section*{California leads the nation}

Per Capita Electricity Consumption

\section*{Efficiency: a critical resource}
```

