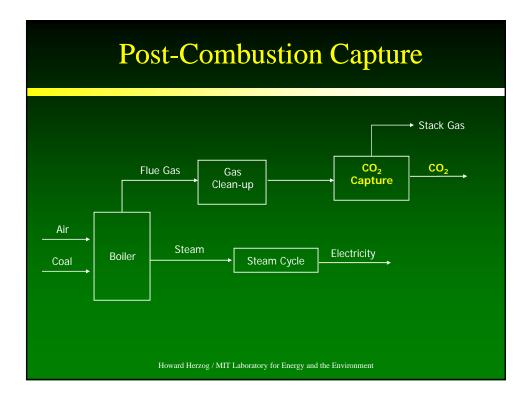
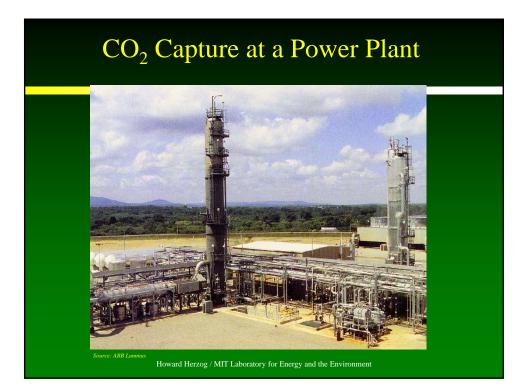
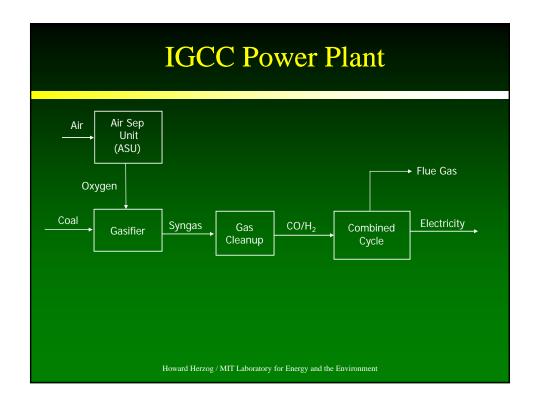
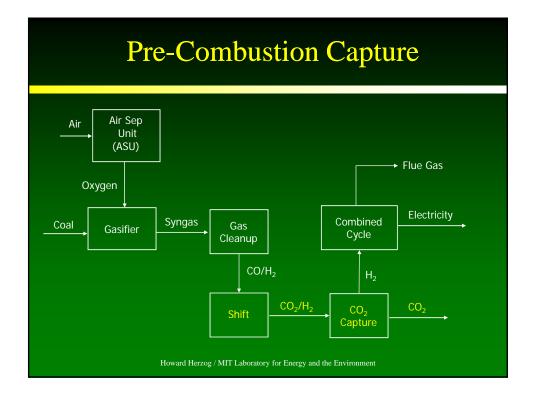

Carbon Capture & Sequestration Economics

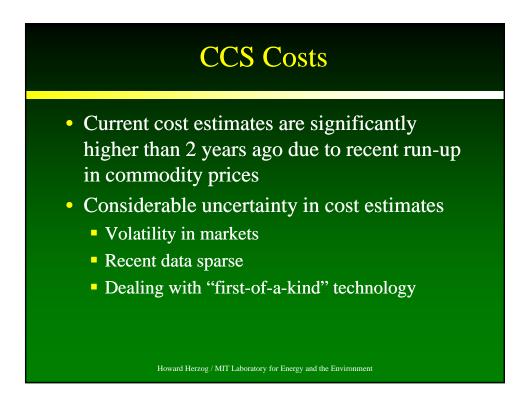

Public Workshops on Carbon Capture and Sequestration


Howard Herzog MIT February 13-14, 2008

CO₂ Capture


- Majority of costs associated with $\overline{CO_2}$ capture
- CO₂ capture refers to the separation of CO₂ from the flue gas its subsequent compression to a "supercritical" or liquid state.
- Why capture? CO₂ is too dilute in flue gas of power plants to economically transport and inject underground.
- Some industrial processes produce a relatively pure CO₂ stream resulting in low capture costs – these are high priority targets for CCS





	<u>~</u>	and Com apital Cos	<u>~</u>	n
_				
Power Plant	Capture Technology	Capital Investment	Power Output	\$/kW
SCPC	Post- Combustion	+23%	-24%	+62%
	(1) In	aches to lower co proved capture p power plant to fac	rocesses	
	Howard Herzog /]	MIT Laboratory for Energy a	nd the Environment	

	GCC 1	IGCC 40
	1	40
5	0.05	0.40
5	0.05	16
		Physical Absorption
	tion Ab	

Estimated CCS Costs for Coal

• Estimated CCS Costs for coal

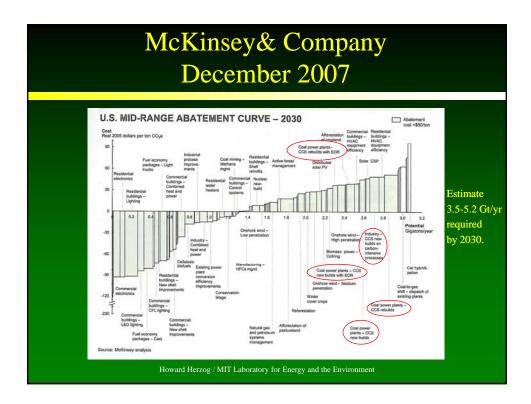
- additional \$35-45 per MWh to cost of generation
- \$50-65/tonne CO₂ avoided
- This cost assumes:
 - **2007**
 - 90% capture
 - CA conditions
 - includes transport and storage (\$10/tonne CO₂ avoided)
 - Today's technology (i.e., no technological breakthroughs required)
 - Regulatory issues resolved without imposing significant new burdens
 - Operations at scale

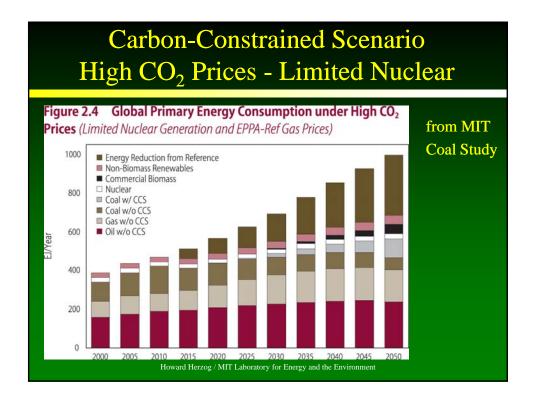
Howard Herzog / MIT Laboratory for Energy and the Environment

CO₂ Sources in California

	# of Facilities	Capacity	2004 CO ₂ Emissions (Mt/yr)
Gas Power	221	39,000 MW	58
Oil Power	3	32 MW	0
Coal Power	8	440 MW	3
Cement	11	15 Mt/yr	12*
Ethanol	4	68x10 ⁶ gal/yr	0.4*
Gas Processing	31	1x10 ⁹ CFD	?
Refineries	15	$2x10^6$ bbl/d	18*
Total	293	-	~90

Estimated CCS Costs


- Estimated CCS Costs for coal
 - additional \$35-45 per MWh to cost of generation
 - \$50-65/tonne CO₂ avoided
- Estimated CCS Costs for gas
 - additional \$30 per MWh to cost of generation
 - \$85/tonne CO₂ avoided
- Estimated CCS Costs for processes with a pure CO₂ stream
 - \$20-30/tonne CO₂ avoided
- EOR credit can offset about \$20/tonne CO₂


Howard Herzog / MIT Laboratory for Energy and the Environment

Important Issues for Economics

- Quality and Quantity of the CO₂ Source
- Proximity of Sources to Sinks
- Boundary Issues Regional vs. In-state
- Existing vs. New Sources

<list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Contact Information

Howard Herzog Massachusetts Institute of Technology (MIT) Energy Initiative Room E40-447 Cambridge, MA 02139 Phone: 617-253-0688 E-mail: hjherzog@mit.edu Web Site: sequestration.mit.edu