

Caroline Angoorly Head of Environmental Markets - North America

CCS - VIEWS FROM INDUSTRY, PART II

The Theory & The Practice

Agenda

- "D &D" Key <u>Disclaimer</u> and <u>Declaration</u> of Biases
- The <u>Theory</u>: Thinking about CCS as a Project
 - The Traditional Project Financing, Key Risk Identification and Mitigation Framework
- The <u>Practice</u>: CCS Project Issues in "Real Life"
- What We Need to Get it Done

"D & D": Key Disclaimer and Declaration of Biases

Some Stipulations

- <u>Disclaimer</u>: The views of the speaker are just that not the views of J.P. Morgan
- ■<u>Declarations</u>: Personal "Bias" Math:
 - ■Geologist + project finance lawyer + developer/environmental professional for power companies + environmental markets proponent =
 - -CCS technology exists, is implementable and is not a mystery in its component parts (capture, compression/transport, injection, well management); coordination of independent technologies is <u>not</u> a stumbling block
 - —The USA as "the Saudi Arabia of coal" is realistically not moving away from coal-fired power generation any time soon
 - Technology stock turnover (to more renewables and generally less carbon-intensive generation) will take decades and billions
 - "Clean coal", in the form of IGCC or other decarbonized technologies, has a key role to play
- <u>Assumption</u>: Big capital projects will require non- or limited recourse financing (given size and capital needs)

J.P.Morgan

The Theory: CCS - The Project Finance Framework

	Highlights	Key considerations	
nstruction risk	 Well known and credible EPC contractor Contractual structure/guarantees around budget, schedule and performance 	 Availability of full EPC wrap Cost overrun risks Assumption/insurance of key risks? Geotechnical 	
oject mics	 Every project assessed on a stand-alone basis Must generate sufficient cash flow to service debt, repay principal and provide return on equity 	 Is CCS just about disposing of a "waste" product from another project or does it generate value? MARKET PRICE of CARBON and avoided emissions 	
ntract cture	 Looking at the entire project, what's the contracted revenue stream? How firm are revenue and cost drivers over term of the project and particularly term of financing? 	 Risk allocation Milestone payment schedules Performance guarantees with liquidated damages from creditworthy entities 	
party risk	 High quality offtakers with good credit Minimum credit standards and "standby" equity provisions in contracts 	Availability of insurance products?Performance bonds and LCs	
nology risk	 The technology used in CCS has been employed successfully in chemical plants/E&P for decades Guarantees for component parts and integrated whole 	 Geologic storage on broad commercial scale still getting established - all about "track record" 	
ership ucture	 Strong project sponsorship with well known and credible entities - technology providers with "skin in the game" Sponsors willing to take cost overrun risk 	 Investors will be focused on ability of sponsors to absorb cost overruns - including around technology 	
rnment	 National, clear, broadly-based cap-and-trade program True market price of carbon = abatement cost Permitting regimes - clear, streamlined, timely Liability regime 	 Combination of grants, loan (or performance/technology) guarantees, tax incentives required Administration of programs critical to success 	

The Theory (cont.): Managing Key Credit Considerations

	Risk	Potential mitigation	Agency perception	Market perception
Construction risk	2	Secure full EPC wrapConstruction completion insuranceStrong liquidated damages requirements	Agencies will need to be comfortable with downside scenario and that contingent capital payments are available to complete the project	Institutional investor appetite for construction risk untested, high risk of negative reaction; no appetite for these risks from traditional PF banks
Project economics	Output Input	Fuel/input supply via hedges/contractsOff-take price certainty via additional fuel/output hedges/contracts	 Hedging and debt amortization supports higher ratings, merchant exposure would be subject to rating agencies downside commodity scenarios 	 Institutional investors generally comfortable with certain commodity risks (input and off-take); traditional PF banks much less so
Contract structure	ō 4	Strong, coordinated terms and conditions	Will conduct detailed legal review of all contracts	 Contracts should be structured appropriately based on project finance precedents
Counterparty risk	3	Higher credit and LC requirements	Will reflect perception and diligence on actual counterparties	 Will reflect perception and diligence on actual counterparties
Technology risk	2	 Equipment component guarantees from manufacturers Secure guarantees for equipment individually and together Equipment providers in ownership group 	Agencies likely to focus even more on technology risks relative to investors	 Overall project technology (e.g., gasification + CCS) will be scrutinized Early projects will require serious government and equity support
Ownership structure	3	 Clear strategy to address potential cost overruns Provide L/C and/or equity reserve Clear corporate structure and sponsorship 	 Agencies will assume sponsor is willing to walk-away if the project encounters difficulty 	 Related in investors' analysis to construction risk
Government support	2	 Guarantees (loan and performance) Assumption of liabilities for CO₂ in the ground Insurance for other project components 	 CCS project likely only ratable once there is some track record of successful, scale projects 	 To extent applicable, favorable effect on execution

Legend: 5 Lowest risk 1 Highest risk
J.P.Morgan

The Practice: A Case Study

Theory is fine, but what about reality?

- ■2006 RFP for new generation in southern Delaware
- ■Three initial proposals: IGCC with CCS; offshore wind; natural gas combined cycle
- ■Three main challenges for the IGCC with CCS:
 - <u>Technology/construction</u> wraps and performance assurances
 - Project economics:
 - —High front-end capital cost
 - No market value for avoided carbon emissions
 - -Disposal of carbon as a waste product
 - Cost and performance burden on other part of project (i.e., power plant efficiency losses/parasitic load)
 - Grassroots support
 - —War of the sound bites
 - —What do we really know about this? Does it work and will the gas stay there?
 - -Lake Nyos, Cameroon, 1986

What We Need to Get it Done

The "Top 5"

Certainty

- Regulatory: Cap-and-trade regime to put credible market price on a ton of carbon in the near term
- Market: Price signal must be clear and truly reflect (or on a glide path, closely approximate) the abatement cost curve
- A clear pathway to siting and permitting not just removal and injection but also the pipeline

■ Economic Incentive

- Technology developers need both a "helping hand" (grants, loan guarantees, performance guarantees) and the right, clear, market signal
- Project implementers need a recognition of the "venture"-type risk in early projects and loan guarantees/grants to help speed down the natural technology implementation curve

Address Potential Liabilities

■ CO₂ transportation; CO₂ in geologic formations – "migration" risk – Price-Anderson analog?

Technology Curve Acceleration

■ Structured and efficient public programs to encourage wide scale commercialization of CCS technology: grants; loan/technology (performance) guarantees

Education and Public Support

- Effective communication around: What is it? How does it work?
 - Why it's not some crazy experiment years of E&P/refining experience