
Overview of Selected Issues Associated with O e e o Se ected ssues ssoc ated t
the Scale of the Climate Change Challenge and 
the Potential Role of Large Scale Commercial 
Deployment of Carbon Dioxide Capture andDeployment of Carbon Dioxide Capture and 
Storage Technologies

Jim Dooley
Joint Global Change Research Institute

March 5 and 6 2009March 5 and 6, 2009

PNNL-SA-64828



Key Points

Climate change means more than a “warmer world” and melting polar ice caps.

Stabilizing the concentration of CO2 means fundamental change to the global 
energy system and therefore fundamental change to the entire global economy.

Technology is essential to addressing climate change and controlling the cost ofTechnology is essential to addressing climate change and controlling the cost of 
doing so.

A strategy to address climate change while simultaneously meeting all of 
society’s other goals and aspirations must include:

Development and subsequent global commercial deployment of advanced, cleaner 
energy technologies 

Continued scientific research on the climate system and impacts

Emissions limitations

Adaptation to climate change.

Th i “ il b ll ” f dd i li h i h “ ilThere is no “silver bullet” for addressing climate change nor is there a “silver 
bullet” for managing the negative consequences of a changing climate. 



Climate Change 101g

Homo sapiensHomo erectus

IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change



“Climate Change” not “Global Warming”

Climate ChangesClimate Changes
Temperature                Sea Level Rise

Precipitation 

Health Impacts Ecosystems
Precipitation 

• Weather-related deaths
• Infectious diseases
• Air quality - respiratory 

illnesses

• Loss of habitat and 
diversity

• Species range shifts
• Ecosystem services

Coastal Areas
Forest Impacts

Agriculture

y

Water Resources

• Erosion and inundation
of coastal lands

• Costs of protecting
vulnerable lands

• Geographic range
• Health, composition, and 

productivity• Crop yields
• Irrigation demand
• Pest management

• Changes in precipitation,  
water quality, and
water supply



Observed Changes in Physical and Biological 
Systems and Surface Temperature 1970-2004Systems and Surface Temperature 1970 2004

(IPCC 2008 TS WG2)



Observed Changes in Temperature and 
Precipitation in the US 1901-2006Precipitation in the US 1901 2006

US Temperature Change, 1901-2006

US Precipitation Change 1901 2006US Precipitation Change, 1901-2006

United States Climate Change Science Program. The Effects of 
Climate Change on Agriculture, Land Resources, Water Resources, 
and Biodiversity in the United States. CCSP Synthesis and 
Assessment Product 4.3 (May 2008).



Projected Temperature and Precipitation Changes

E t d d d ll d h i th l b l di t ib ti f i it ti d f i ( t f

Solomon S. et.al. PNAS 2009;106:1704-1709©2009 by National Academy of Sciences

Expected decadally averaged changes in the global distribution of precipitation per degree of warming (percentage of 
change in precipitation per degree of warming, relative to 1900–1950 as the baseline period) in the dry season at 
each grid point, based upon a suite of 22 AOGCMs for a midrange future scenario (A1B).
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Carbon Management Problem Summarized by 
Article 2 of the United Nations Framework 
C ti Cli t ChConvention on Climate Change

United Nations Framework 
Convention on Climate Change has g
nearly 200 member countries, 
including the United States, and 
establishes as its “ultimate objective”:

Concentrations
…the stabilization of greenhouse 
gas concentrations… 

Concentrations 
not

Emissions

…at a level that would prevent 
dangerous…interference with the 
climate system… 

Don’t
Know What is

Dangerousy

…and to enable economic 
development to proceed in a 

g

Economic
Developmentp p

sustainable manner.
p

Matters



Climate Change Is a Long-term Strategic Problem 
with Implications for Todayp y
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This tells us that a fixed and finite 
amount of CO2 can be released to 
the atmosphere over the course of 
this century.  
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greenhouse gas emissions 
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As we move forward in time and 
this planetary emissions budget is 
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more valuable.  
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Stabilization of CO2 Concentrations Means 
Fundamental Change to the Global Energy System 
(550 t bili ti )(550 ppmv stabilization)
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What will happen if we choose to do nothing 
about climate change?g
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What needs to happen if long term atmospheric 
concentrations of CO2 need to be kept close to 
c rrent le els of abo t 380 ppm ?
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Global Electricity Production in 
“Overshoot” ScenarioOvershoot  Scenario
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CO2 Capture and Storage: 
Not Nearly this SimpleNot Nearly this Simple



Overview of Carbon Dioxide Capture and Storage

Courtesy of CO2CRC



Within the U.S. There Is a Large Geologic 
CO2 Storage Resource and Large Potential 
Demand for CO StorageDemand for CO2 Storage

3,900+ GtCO2 Capacity within 230 Candidate 
Geologic CO2 Storage Reservoirs

2,730 GtCO2 in deep saline formations (DSF) with perhaps close 
to another 900 GtCO2 in offshore DSFs
240 Gt CO2 in on-shore saline filled basalt formations 
35 GtCO2 in depleted gas fields
30 GtCO2 in deep unmineable coal seams with potential    for 

h d lb d th (ECBM)enhanced coalbed methane (ECBM) recovery
12 GtCO2 in depleted oil fields with potential for enhanced oil 
recovery (EOR)

• 1,053 electric power plants 
• 259 natural gas processing

• 38 ethylene plants
• 30 hydrogen production

1,715 Large Sources (100+ ktCO2/yr) 
with Total Annual Emissions = 2.9 GtCO2

• 259 natural gas processing 
facilities

• 126 petroleum refineries 
• 44 iron & steel foundries
• 105 cement kilns 

• 30 hydrogen production 
• 19 ammonia refineries
• 34 ethanol production plants
• 7 ethylene oxide plants



The Principal Role for CCS in the U.S. Is to Help 
Decarbonize the Electric Utility SectorDecarbonize the Electric Utility Sector

It is important to realize that we WRE450: 2020 WRE550: 2020

WRE450 WRE550
p

are in the earliest stages of the 
deployment of CCS 
technologies.
The potential deployment of 
CCS

2020

CCS technologies could be 
truly massive. The potential 
deployment of CCS in the US 
could entail: 

1 000 f l t d

2

WRE450: 2035 WRE550: 2035

1,000s of power plants and 
industrial facilities 
capturing CO2, 24-7-365.
10,000s of miles of 
d di t d CO i li

2035

WRE450: 2050 WRE550: 2050dedicated CO2 pipelines.
100s of millions of tons of 
CO2 being injected into the 
subsurface annually.
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Comparing the Existing U.S. Natural Gas Pipeline 
Transmission System, Potential Future CCS-Driven CO2
Pipeline Systems and the Size of U S EconomyPipeline Systems and the Size of U.S. Economy
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CCS Will Deploy Heterogeneously Across 
the U.S. Economyy

The Net Cost of Employing CCS within the United $60
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States - Current Sources and Technology
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IGCC+CCS and Nuclear Are Keys to 
Decarbonizing Baseload PowerDecarbonizing Baseload Power

In 2005, conventional fossil-fired 
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Uncertainty about Future Greenhouse Gas 
Constraints Increases the Value of Post-
C b ti CCS T h l iCombustion CCS Technologies

CO2 Emissions Prices
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MA Wise and JJ Dooley. 2008. “The Value of Post-Combustion Carbon Dioxide Capture and Storage Technologies in a World with 
Uncertain Greenhouse Gas Emissions Constraints.” International Journal of Greenhouse Gas Control. In press.



The Scope of the Scale-up Challenge

Snøhvit
• CO2 storage began April 2008
• 0.7 MtCO2/year injected into DSF
• 23 MtCO injected over 30 years• 23 MtCO2 injected over 30 years
• 150 km of the Norwegian coast

• CO2 storage began in 2000
2 MtCO / b i i j t d i

Weyburn

CO t b i 2004

In Salah
•2 MtCO2/year being injected via 
approximately  85 injection wells over a 40 
km2 area
•Projected 30 MtCO2 lifetime storage 

• CO2 storage began in 2004
• Three 1.5 km horizontal CO2
injector wells are used to inject 1.2 
MtCO2/year
• Projected 17 MtCO2 lifetime storage•Started injection in 1996 

•More than 10 MtCO2 have been 
injected via 1 injection well with a 
plume approximately 5 km2 with

Sleipner

plume approximately 5 km2 with 
•Projected 20 MtCO2 lifetime storage
•150 km of the Norwegian coast



The Challenge of Scale Grows with 
Time — the near term 1400
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The Challenge of Scale Grows with Time —
the mid to long term 800
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Scale-up Challenge
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Experiential Knowledge Is Needed to Move CCS 
Forward

The cost of capturing CO2 is not the single biggest obstacle standing 
in the way of CCS deployment. 

Forward

y p y

When thinking about storing 100% of a large power plant’s emissions 
for 50+ years, there are a number of things that we would like to 
know today but are likely to only learned through real world 
operational experience:operational experience:

Can the same injector wells be used for 50+ years?

Are the operational characteristics that make a field a good 
candidate CO2-driven enhanced oil recovery similar to the 
d d l d d l i f ti th t i b idemands placed upon deep geologic formation that is being 
used to isolate large quantities of CO2 from the atmosphere for 
the long term?

What measurement, monitoring and verification (MMV) 
“technology suites” should be used and does the suite varytechnology suites  should be used and does the suite vary 
across different classes of geologic reservoirs and/or with time?

How long should post injection monitoring last?

What are realistic, field deployable remediation options if 
leakage from the target storage formation is detected?

Who will regulate CO2 storage on a day-to-day basis?  What 
criteria and metrics will this regulator use?



GTSP Phase II Capstone Report on Carbon 
Dioxide Capture and StorageDioxide Capture and Storage

CCS technologies have tremendous potential value 
for society.y

CCS is, at its core, a climate-change mitigation 
technology and therefore the large-scale deployment 
of CCS is contingent upon the timing and nature of 
f t GHG i i t l li ifuture GHG emission control policies.

The next 5-10 years constitute a critical window in 
which to amass needed real-world operational 
experience with CCS systemsexperience with CCS systems.

The electric power sector is the largest potential 
market for CCS technologies and its potential use of 
CCS has its own characteristics that need to be betterCCS has its own characteristics that need to be better 
understood.

Much work needs to be done to ensure that the 
potential large and rapid scale-up in CCS deployment p g p p p y
will be safe and successful.


