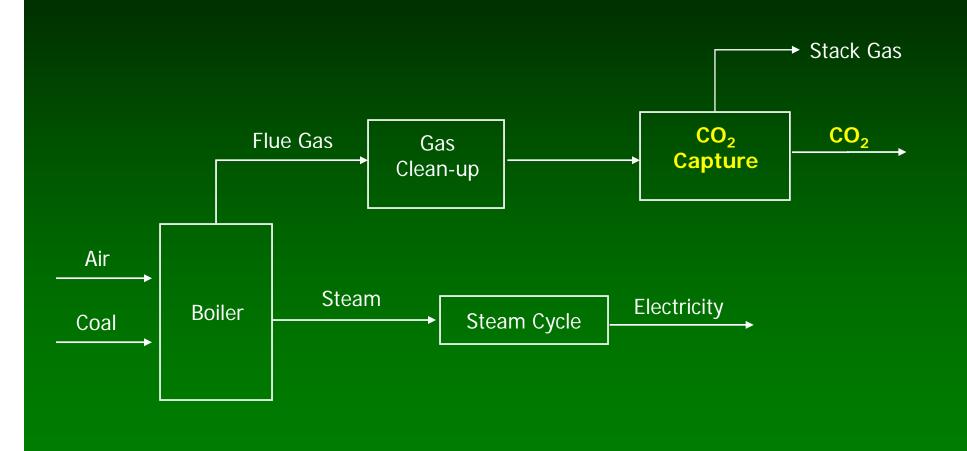
Carbon Capture & Sequestration Economics

Public Workshops on Carbon Capture and Sequestration

Howard Herzog MIT March 5, 2009


Overview

- Capture primer
- Costs
- CCS as part of a mitigation portfolio

CO₂ Capture

- Majority of costs associated with CO₂ capture
- CO₂ capture refers to the separation of CO₂ from the flue gas its subsequent compression to a "supercritical" or liquid state.
- Why capture? CO₂ is too dilute in flue gas of power plants to economically transport and inject underground.
- Some industrial processes produce a relatively pure CO₂ stream resulting in low capture costs these are high priority targets for CCS

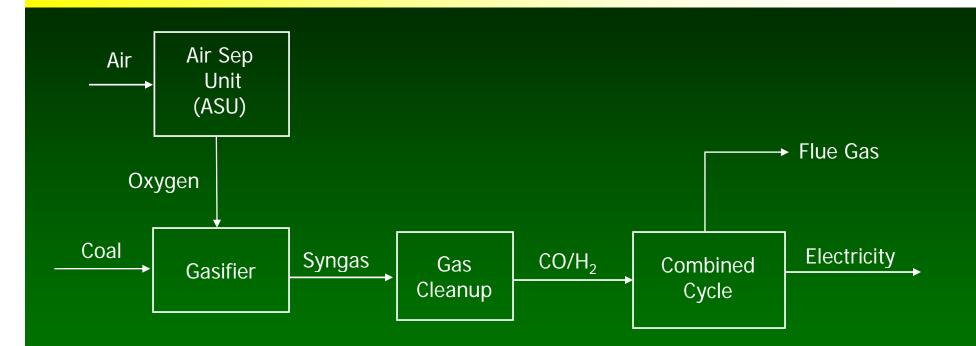
Post-Combustion Capture

CO₂ Capture at a Power Plant

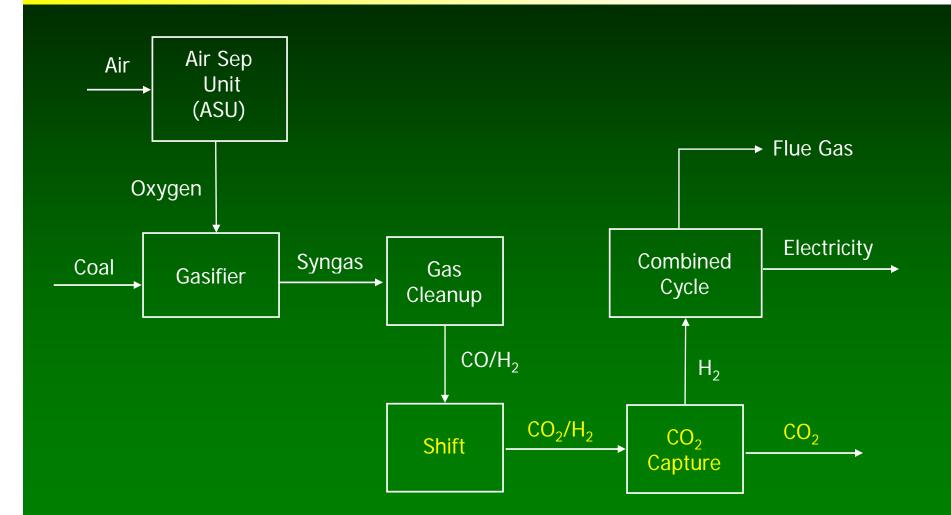
Source: ABB Lummus

Capture and Compression Capital Costs

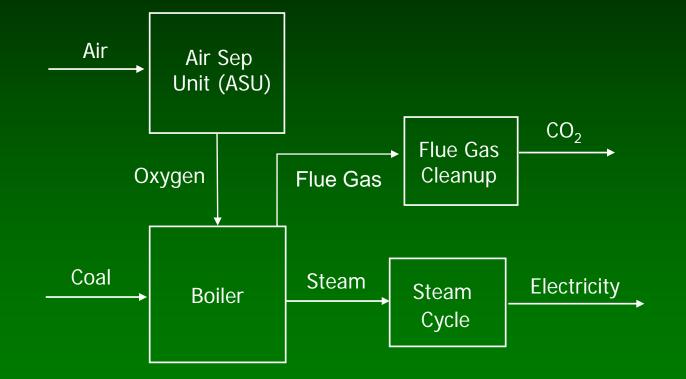
Power	Capture	Capital	Power	\$/kW
Plant	Technology	Investment	Output	
SCPC	Post- Combustion	+23%	-24%	+62%


Two approaches to lower cost of capture: (1) Improved capture processes (2) Modify power plant to facilitate capture

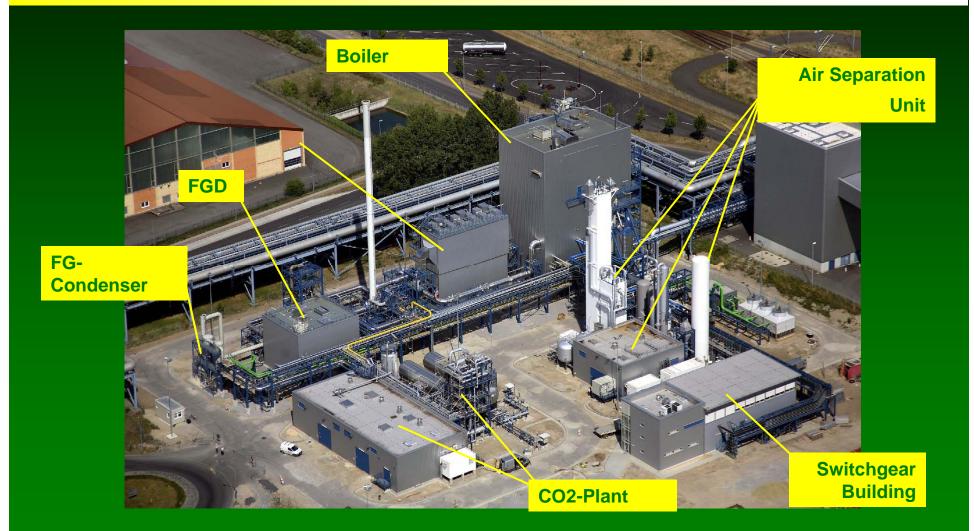
Change Power Generation Process to Facilitate CO₂ Capture


Power Plant	PC	NGCC	IGCC	
P (atm)	1	1	40	
Fract CO ₂	0.15	0.05	0.40	
PCO ₂ (atm)	0.15	0.05	16	
Capture Process	Chemical Absorption	Chemical Absorption	Physical Absorption	

 PCO_2 indicates the difficulty of capture.

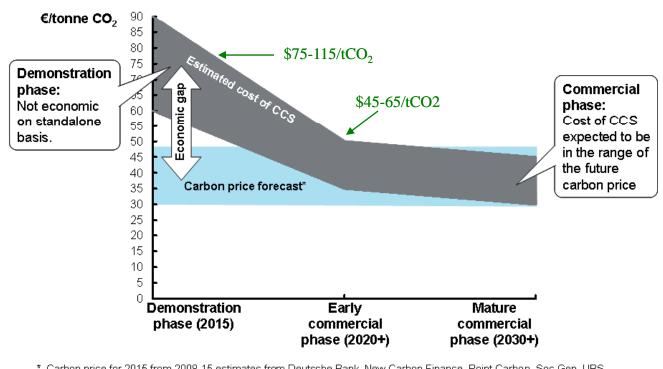

IGCC Power Plant

Pre-Combustion Capture


Oxy-Combustion Capture

Vattenfall Schwarze Pumpe Plant

Oxy-combustion 30 MW_{th} Pilot Plant


CCS Costs

- Considerable uncertainty in cost estimates
 - Volatility in markets
 - Recent data sparse
 - Dealing with "first-of-a-kind" technology

Estimated CCS Costs for Coal

- Estimated CCS Costs for coal:
 - additional \$40 per MWh to cost of generation
 - \$60-65/tonne CO₂ avoided
- This cost assumes:
 - **2007**\$
 - Nth plant
 - 90% capture
 - includes transport and storage (\$10/tonne CO₂ avoided)
 - Today's technology (i.e., no technological breakthroughs required)
 - Regulatory issues resolved without imposing significant new burdens
 - Operations at scale
- For details see:
 - http://sequestration.mit.edu/pdf/GHGT9_Hamilton_Herzog_Parsons.pdf

McKinsey and Company Report

* Carbon price for 2015 from 2008-15 estimates from Deutsche Bank, New Carbon Finance, Point Carbon, Soc Gen, UBS, assumed constant afterwards unce: Reutare: Team Apply aid

Source: Reuters; Team Analysis

From Carbon Capture & Storage: Assessing the Economics, McKinsey and Company report http://www.mckinsey.com/clientservice/ccsi/pdf/ccs_assessing_the_economics.pdf

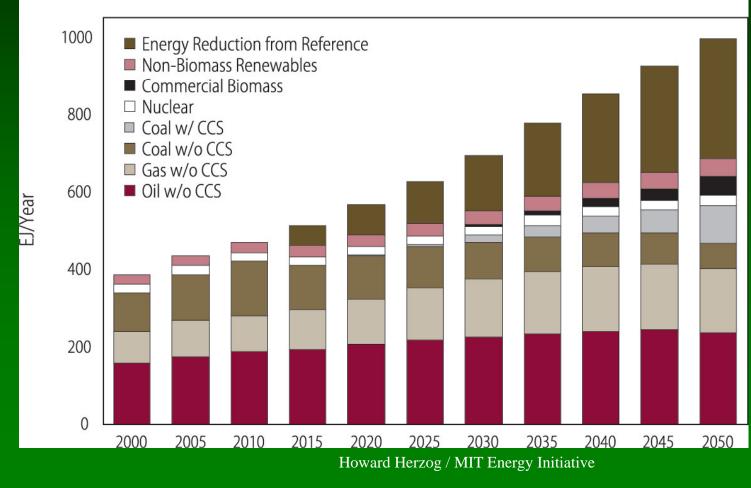
Estimated CCS Costs

• Estimated CCS Costs for coal

- additional \$40 per MWh to cost of generation
- \$60-65/tonne CO₂ avoided
- Estimated CCS Costs for gas
 - additional \$30 per MWh to cost of generation
 - \$85/tonne CO₂ avoided
- Estimated CCS Costs for processes with a pure CO₂ stream
 - \$20-30/tonne CO₂ avoided
- EOR credit can offset about \$20/tonne CO₂

Important Issues for Economics

- Quality and Quantity of the CO₂ Source
- Proximity of Sources to Sinks
- Existing vs. New Sources


Existing vs. New Sources

- In general, applying CCS to a new source has advantages over retrofits
 - Lower costs
 - » Optimized designs
 - » Higher efficiencies
 - » Fewer constraints
 - Siting flexibility
 - Adding capacity vs. subtracting capacity
- Exception: Existing facilities that produce a concentrated CO₂ stream are best near-term prospects

Carbon-Constrained Scenario High CO₂ Prices - Limited Nuclear

Figure 2.4 Global Primary Energy Consumption under High CO₂ Prices (Limited Nuclear Generation and EPPA-Ref Gas Prices)

from MIT Coal Study

Effect of Carbon Price CCS Available

	2000	BAU 2050	Low CO ₂ Price 2050	High CO ₂ Price 2050
Coal CO ₂ emissions (GtCO ₂ /yr)	9	32	15	5
Coal Consumption (EJ/yr)	100	448	200	161
% Coal with CCS	0	0	4	60

From MIT Coal Study

- Despite carbon price, coal consumption increases from today's use
- Coal use does decrease from a BAU case
- The higher the carbon price, the more coal consumption decreases
- Low carbon prices do not induce CCS
- High carbon prices coal consumption increases, but emissions decrease (compared to today) thanks to CCS
- Price Scenarios
 - Low \$7/tonne CO2 in 2010 with 5% annual increase
 - High \$25/tonne CO2 in 2015 with 4% annual increase

Closing Thoughts

- Almost universal agreement of top-down and bottom-up economic models that CCS is potentially a cost-effective mitigation technology
- Investments and learning need to start immediately to get desired results by mid-century
- CCS varies regionally each state/region has its unique set of sources and geological reservoirs

Contact Information

Howard Herzog Massachusetts Institute of Technology (MIT) **Energy** Initiative Room E19-370L Cambridge, MA 02139 Phone: 617-253-0688 E-mail: hjherzog@mit.edu Web Site: sequestration.mit.edu