Potential Exposure-Related Human Health Effects of Oil and Gas Development:

Literature Review Appendices

Prepared by:
Roxana Witter1, MD, MSPH
Kaylan Stinson1, MSPH
Holly Sackett1, MSPH
Stefanie Putter2, BA
Gregory Kinney1, MPH
Daniel Teitelbaum1, MD
Lee Newman1, MD, MA

September 15, 2008

Contact: Roxana Witter, MD, MSPH
Colorado School of Public Health
University of Colorado Denver
4200 East Ninth Ave., B-164
Denver, CO 80262
Roxana.Witter@uchsc.edu

1-University of Colorado Denver, Colorado School of Public Health, Denver, Colorado
2-Colorado State University, Department of Psychology, Fort Collins, Colorado
Potential Exposure-Related Human Health Effects of Oil and Gas Development:
Literature Review Appendices

Appendix 1: Volatile Organic Chemicals (VOC)p. 3
Appendix 2: Diesel Exhaust ...p. 10
Appendix 3: Nitrogen Oxides (NOx), Sulfuric Oxides (SOx),
 Ozone, Particulate Matter ...p. 14
Appendix 4: Polycyclic Aromatic Hydrocarbons (PAH)p. 50
Appendix 5: Metals ...p. 53
Appendix 6: Hydrogen Sulfide (H2S) ...p. 59
Appendix 7: Fossil Fuels ...p. 61
Appendix 8: Noise ..p. 63
Appendix 9: Light ..p. 65
Appendix 10: Occupational Injuries ..p. 66
Appendix 11: Social / Psychological ...p. 67
Appendix 1

Appendix 2

Appendix 3

(2003). "Two more reports link air pollution and asthma...and an editorial view." Child Health Alert 21: 3.
Adams, W. C. (2003). "Relation of pulmonary responses induced by 6.6-h exposures to 0.08 ppm ozone and 2-h exposures to 0.30 ppm ozone via chamber and face-mask inhalation." Inhalation Toxicology 15(8): 745-59.
Adams, W. C. (2006). "Comparison of chamber 6.6-h exposures to 0.04-0.08 PPM ozone via square-wave and triangular profiles on pulmonary responses." Inhalation Toxicology 18(2): 127-36.

Delfino, R. J., H. Gong, Jr., et al. (2007). "Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants." Environmental Health Perspectives 111(4): 647-56.

population-based study in Dijon, France." Occupational & Environmental Medicine 64(7): 439-45.

Yue, W., A. Schneider, et al. (2007). "Ambient source-specific particles are associated with prolonged repolarization and increased levels of inflammation in male coronary artery disease patients." Mutation Research 621(1-2): 50-60.

Appendix 4

Kim, M. K., S. Oh, et al. (2004). "Evaluation of biological monitoring markers using genomic and proteomic analysis for automobile emission inspectors and waste incinerating workers exposed to polycyclic aromatic hydrocarbons or 2,3,7,8,

Appendix 5

Appendix 6

exposure to hydrogen sulfide." Journal of Medical Toxicology: Official Journal of the American College of Medical Toxicology 3(2): 73-81.

Appendix 7

Appendix 8

Appendix 9

Appendix 10

Appendix 11

