EXECUTIVE SUMMARY

In India, increasing the fleet of electric vehicles (EV) and charging infrastructure will be key to improving air quality in cities, enhancing energy security (by reduced dependence on imported crude), and fighting climate change. The national government is also moving toward a massive scale-up of renewable energy and sustainable mobility (e-mobility). Several states and cities along with private companies are moving forward with electric mobility plans in India. As per an analysis by Niti Aayog and Rocky Mountain Institute, 30% EV penetration by 2030 will generate an estimated saving of up to 474 million tons of oil equivalent (Mtoe) and 846 million tons of net CO₂ emissions over their lifetime.¹

* For more information please contact Anjali Jaiswal ajaiswal@nrdc.org, Charu Lata clata@nrdc.org
One of the main factors hindering rapid EV adoption is range anxiety, the fear of running out of battery power before being able to recharge. This concern is amplified in areas with limited charging infrastructure. Lack of charging infrastructure and its high deployment cost given the price sensitive Indian market is a major deterrent. Also, having an electric vehicle which is equivalent to an internal combustion engine vehicle in performance and pricing remains key to expanding electric mobility. To accelerate EV usage in India, thirteen states and union territories (UT) are leading the way in building production, services, and infrastructure. Most states in India have initial programs for installing charging infrastructure in public and private places. A sound charging infrastructure plan involves many players. It includes representatives from various levels of government, local business owners, land developers, public utilities, institutions, resident welfare associations, vehicle associations and the public, especially EV owners. As India moves forward with implementing EV policies, a key question among city planners is “how to site and locate charging infrastructure” in the Indian context.

This issue brief provides decision-makers and stakeholders with information on the principles of charging infrastructure location and siting. It also presents successful EV adoption approaches that have been used by cities in other parts of the world. In addition, based on international practices, this issue brief presents three approaches to siting EV charging infrastructure:

- **“Local Knowledge” Stakeholder Approach**
- **Modeling Approach**
- **Hybrid Approach (combining the stakeholder and model approach)**

An advantage of the hybrid approach is that it makes initial planning for bigger areas more manageable by employing a small group of modelers, rather than a large gathering of stakeholders. In the later phase before implementation, stakeholder engagement and local knowledge will still be needed to fill in the gaps between the modeling results and reality.

Given the local context with active stakeholder involvement and limited data, the hybrid approach is an appealing approach for Indian cities.

OVERVIEW OF CHARGING INFRASTRUCTURE IN INDIA

India aims to expand its electric mobility market, yet the development of EV charging infrastructure, also known as EV supply equipment (EVSE), remains in the early stages. A robust charging infrastructure is crucial for EV market growth, and a healthy ratio between the number of EVs to charging stations is important to encourage early adopters and relieve drivers of range anxiety.

India is estimated to have approximately 500 public EV charging stations and is in early stages of developing charging infrastructure. In January 2020, the Department of Heavy Industry (DHI) approved setting up 2,636 electric vehicle charging stations (1,633 fast and 1,003 slow charging stations) across 62 cities in 24 states and union territories in the country under the FAME II scheme. A strong public charging system is needed to support robust EV use. For example, the State of California in the United States is considered an EV leader and has 19,687 public charging units and 506,608 EVs on the road, a 1:26 ratio. In an even denser city like Beijing, China, the ratio between EV chargers and EVs has reached 1:5 ratio, and if private chargers are counted, 1:1.5 ratio. The European Commission directed EU countries to set EVSE deployment targets for 2020 and 2025 to match the level of infrastructure required by the EU Alternative Fuels Infrastructure Directive (2014). Targets include establishing one publicly accessible charging outlet for every 10 cars by 2020.

The Indian government has made strong progress to spur transportation electrification with national and state EV plans. Yet, a gap remains in charging infrastructure. Both capital investments and installations are needed to achieve state and national ambitions. For example, state-run Energy Efficiency Services Limited (EESL), tasked with procuring...
10,000 EVs for government use, cited that they could not meet the goal, due to a lack of charging infrastructure.⁹

To accelerate EV adoption, the Government of India launched the incentive scheme, Faster Adoption and Manufacture of (Hybrid and) Electric vehicles (FAME II), under the umbrella of the National Electric Mobility Mission Plan. For projects that meet specific requirements, up to 100 percent of the charging infrastructure equipment cost could be funded. At the national level, the Ministry of Power (MoP) developed “Charging Infrastructure for Electric Vehicles – Guidelines and Standards.” The guidelines require that charging infrastructure conform to a set of standards for ease of use and be compatible with multiple existing charging standards.

To expand the EV market, the national government and leading states are determining the locations of the charging infrastructure. For example, in the Guidelines and Standards from MoP, location factors are explicitly included in the document, which states “at least one charging station should be available in a grid of 3 km by 3 km, and one charging station should be set up at every 25 km on both sides of highways/roads.” In July 2019, the Department of Heavy Industry, issued an Expression of Interest, inviting installation of charging stations in cities with populations over one million, satellite towns connected to the seven major metropolitan regions, and other cities meeting certain criteria.

As policymakers establish incentives and programs, one crucial question is where to logistically have initial charging infrastructure placements, followed by increased growth. Based on international best practices, two key considerations are charging station density and economic feasibility. It is common that the government planning leads the planning process. A private actor may want to plan for its own charging network, which usually still needs the support or approval of the government.

Public entities can invest in and build charging infrastructure, like EESL in India. Public-Private-Partnerships (PPPs) are also common. PPPs are best suited for when the government wants to maintain the charging infrastructure as a public good, yet needs market expertise and financial resources. As a public good, the government can apply public policy tools more easily, such as price control for affordability, and provide charging in low-utilization areas for better charging coverage.

Takeaway point: PPPs are best suited for when the government wants to maintain the charging infrastructure as a public good, yet needs market expertise and financial resources. As a public good, the government can apply public policy tools more easily, such as price control for affordability, and provide charging in low-utilization areas for better charging coverage.

Private actors, such as local business owners and specialized charging providers, can work on their own for-profit stations and deploy charging infrastructure sometimes more quickly than public chargers. This is especially common for battery swapping stations.¹⁰ For example, there have been working business models where the company sells e-scooters and establishes battery switching stations to service their e-scooter users and charge a fee like Gogoro’s business model in Taiwan.¹¹ Ultimately, private sector stations will complement the government’s plan.
LOCATION AND SITING BASICS

Location and siting are often used interchangeably but have different meanings. Location usually refers to broader areas where a charging station is located, such as around shopping center or movie theaters, whereas siting refers to the more specific position within a location, such as a parking spot adjacent to the north entrance of the shopping center. One can think about location as a bubble, and a site as a point in the bubble.

Location and siting can be framed as: 1) ‘Location’ is finding suitable areas for charging infrastructure and fitting an adequate number of stations to the areas, so that overall refueling demands are met, and 2) ‘Siting’ is finding the exact spots for stations, considering site-specific details, including but not limited to cost of connection (including power grid upgrades needed, location charges, etc.), accessibility, visibility, and safety, so that the planned stations can be well utilized and economically feasible. Depending on the planning scope, the planning body can focus on either, or do both sequentially.

THREE APPROACHES TO CHARGING INFRASTRUCTURE LOCATION AND SITING

1. “LOCAL KNOWLEDGE” STAKEHOLDER APPROACH

For smaller communities with limited budgets and/or with limited data availability, a “local knowledge” based approach that engages stakeholders can be an effective methodology to conduct the planning while meeting budget or data constraints. This approach is based on a tool kit developed by the Community Energy Association, Planning for Electric Vehicle Charging Infrastructure. The approach involves decision-makers to convene local experts with knowledge on traffic patterns and urban space.

There are four major steps for the “Local Knowledge” Stakeholder Approach: 1) Engage and educate, 2) Determine vision, goals and objectives, 3) Identify preferred locations, and 4) Identify promising sites. Depending on the size of the planning area, and the timeframe of the planning exercise, the identification of locations and sites can be done together.

STEP 1: ENGAGE AND EDUCATE

To build awareness in the community and raise awareness on charging infrastructure, decision makers work to educate stakeholders, community members, and potential partners on information about EVs, EV charging, and how these matters relate to broader community goals. This step may also help identify local champions and possible partners for EV charging station deployment.
Key stakeholders for an EV planning process include: representatives from local or state government, community business owners (including vehicle dealerships), local land developers and owners, local utility representatives, research and data collection institutions (e.g. Institute for Transportation and Development Policy, National Institute of Urban Affairs, Centre for Science and Environment, World Resources Institute), tourism/commerce/economic development representatives, EV owners and the broader public.

STEP 2: DEVELOP A VISION AND GOALS

Understanding where EV charging equipment fits within the area, both in the short and longer term, is helpful. The following questions can guide consideration on the current and future role that EVs play in the area:

- How do the goals for EVs align with other goals?
- Will EV drivers use their car for different purposes (i.e. to commute, operate commercially, run local errands, or take long trips, etc.), and do any of these groups of EV drivers align with the government’s priority?
- What are the main goals to create charging infrastructure? Easy access to charging for owners, or to reduce greenhouse gas (GHG) emissions?
- What is the timeframe for the plan? What kind of charging equipment deployment (level 2 charging, fast charging) is suitable for the short term (one to five years)?
- What is the long-term vision (five to 20 years)?
- How does the community want to stay informed about progress? How should lessons over time be incorporated back into the planning process?

STEP 3: IDENTIFYING PREFERRED LOCATIONS

A map of the area is essential to this process. Ideally, the map would show the planning boundaries and any existing charging stations, as well as important features shown in Table 1. The table describes the features and identifies the reason why it should be shown on the map. For example, the transportation hub is visible and convenient to locate and is a common destination for many commuters, making it relevant to be shown on the map. For larger areas, it can be helpful to impose a 5 km or denser grid onto the map.

Hainan Case Study – Principles for Charging Infrastructure Planning

Hainan Province in China has developed a set of principles for charging infrastructure location planning for regions with limited data and budgetary resources.14

Hainan is an island province of China with 33,920 square kilometers and a population of 9.32 million. It has a seasonal population of 0.8 million due to its mild winters. Hainan has a similar population density (around 300 people per square kilometer) to some Indian states, such as Gujarat and Telangana, and can therefore serve as a reference for charging infrastructure planning.

Hainan recently released its updated charging infrastructure plan for 2019 to 2030. The provincial plan shares some of China’s most recent knowledge on planning for charging infrastructure adequacy.

The adequacy goals are based on city tier, vehicle, and location type. The plan categorizes cities into three tiers based on the level of economic development and function (i.e. economic center, tourist destination, or ecological preservation zone). The plan then assigns goals to best suit the city’s role and current progress in EV adoption. There are specific requirements for the different location types.

- All residential locations must have, or be ready for the installation of, charging infrastructure by 2020.15 There should be adequate charging units for every private EV.16 Slow and shared charging are preferred for home charging availability and accessibility.

- For mid-trip charging there should be two charging or battery switching stations for every petrol/diesel station, usually located every 50 kilometers, on both sides of the road. For island-looping routes, 40 charging or switching stations will be built. Existing gas stations are encouraged to install fast charging equipment.

- For workplace parking, no less than 25 percent of the parking spaces should be reserved for EVs, and workplace charging spaces should be open to the public during off-peak hours.

- Hainan plans to increase from 8,000 public charging units to 51,000 by 2025, and 166,000 units by 2030. It will also increase the number of battery switching stations from 160 to 430 by 2025, and 627 stations by 2030. For private, taxi, and car-sharing EVs, the goal ratio between charging units and vehicles is 1:1. For charging units to buses, city fleets, and commercial vehicles, the ideal ratio is 1:2. In 2019, the ratio is 1:5, and 1:7 if only public charging units are counted.
Table 1: List of Important Features to Show on the Map

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Reasons why it is shown on the map</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Visible & Convenient</td>
</tr>
<tr>
<td>Major and minor roads</td>
<td>Highly visible, well-travelled locations</td>
<td>x</td>
</tr>
<tr>
<td>Transportation hubs</td>
<td>Bus depots, shared bike areas, train stations, major intersections, park & ride locations</td>
<td>x</td>
</tr>
<tr>
<td>Institutional land uses</td>
<td>Government buildings, hospitals, schools, recreation and community centers and libraries</td>
<td>x</td>
</tr>
<tr>
<td>Commercial uses</td>
<td>Retail centers, business districts or tourism destinations, restaurants</td>
<td>x</td>
</tr>
<tr>
<td>Gas stations</td>
<td>Sites already popular for “refueling”</td>
<td>x</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>Surface lots, underground or structural parking facilities not covered under other uses</td>
<td>x</td>
</tr>
<tr>
<td>Future growth areas</td>
<td>Especially if significant commercial, institutional, or high-density residential use is planned</td>
<td>x</td>
</tr>
<tr>
<td>Jobs density</td>
<td>Employment centers with large number of jobs</td>
<td>x</td>
</tr>
<tr>
<td>High density residential uses</td>
<td>Areas where residents may not have their own parking (i.e. apartments)</td>
<td>x</td>
</tr>
<tr>
<td>Publicly owned properties</td>
<td>Publicly owned facilities that are not covered under institutional uses (including unused properties)</td>
<td>x</td>
</tr>
<tr>
<td>Power lines/stations</td>
<td>Proximity to existing high-power electricity</td>
<td></td>
</tr>
</tbody>
</table>

Source: NRDC adopting British Columbia Toolkit information

Stakeholders can develop criteria for location selection, as listed in bullets below. Then, stakeholders can rank locations with the criteria to achieve stakeholder goals.

General criteria for good locations include:

- will the siting support commuters, visitors, residents, or business?
- does the siting support an even distribution throughout the area;
- does the siting supports residential and commercial areas with expected future growth;
- does the siting consider the travel pattern and the mode of travel of the commuters;
- roughly how expensive would it be to install chargers?
- is the location easy to see and find;
- is there something to do nearby;
- is the demand for general vehicle parking so high that it creates conflicts for parking space;
- are there potential co-benefits with the siting (i.e. local economic development, green branding, noise reduction);

STEP 4: IDENTIFYING PREFERRED SITES

Identification of preferred sites starts with identifying possible sites at high potential locations. If there is more than one possible site, the options can be evaluated and ranked with a list of criteria in Table 2. In smaller communities, maps and personal knowledge will suffice, or if necessary, a walk through the location. During the planning stage, it is beneficial to clarify ownership (or ownership model) of the possible sites, system operation, and the development of partnerships.
Table 2 List of Criteria for Good Charging Sites

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible</td>
<td>The site should have maximum visibility for possible users</td>
</tr>
<tr>
<td>Secure</td>
<td>The site should be well-lit and visible to others. General environmental design principles on crime prevention can be used here</td>
</tr>
<tr>
<td>Near a source of power</td>
<td>Existing light fixtures, power poles etc. can reduce installation costs by eliminating the need to trench through concrete or pavement, thus reducing the amount of renovation required to extend electrical conduits</td>
</tr>
<tr>
<td>Level topography</td>
<td>The site should not be on a hill, for rolling risk, and should not be in a depression, which could accumulate rain or snow</td>
</tr>
<tr>
<td>Wide availability</td>
<td>Ideally, the site should be available at any time of the day, and at a minimum, during business hours</td>
</tr>
<tr>
<td>Easy access and egress</td>
<td>Above ground locations often have more flexibility. There should be ample room to accommodate the number of planned vehicles without obstructions</td>
</tr>
<tr>
<td>Sheltered and ventilated</td>
<td>This will greatly improve the charging experience for a safety and comfort perspective</td>
</tr>
<tr>
<td>Timing constraints</td>
<td>Identify if anything might make the site quicker (e.g., willing land owner) or slower (e.g., city center power upgrade complications) to deploy charging</td>
</tr>
</tbody>
</table>

Source: NRDC adopting British Columbia Toolkit information

Once the number of possible locations and sites are reduced, a detailed site evaluation should be completed, and a site plan should be prepared. The plan should address, including but not limited to, measurement of the potential site to ensure ability to accommodate planned number of vehicles and charging equipment, and evaluation of electrical conduits near the site and measurement of their distance from the site.

2. MODELING APPROACH

Communities with extensive data on traffic patterns and vehicle use, often utilize an approach with extensive modeling. This model-based approach usually requires less local human knowledge in specific areas but requires datasets of considerable size on locations and potential vehicle travel trajectories.

The use of modeling may work well if the planning area is too big for the planning body to purely rely on local knowledge, and when good data is already available or can be easily collected. It is potentially more transparent as well, particularly if the data inputs and the model are transparent. As planning goes from the regional scale to the local level, additional stakeholder voices and factors may need to be considered, necessitating human knowledge and decisions.

Currently, there are a number of models available, with several applied to the real-world cases. One example is the application of the University of California Davis EV Planning Toolkit to Greater Philadelphia in the United States. The model tells where people may buy EVs and provides the location and magnitude of anticipated charging demand. The locations are not specific but are generally within a one to two-mile area. A literature review on different types of models is available in the Appendix.

National Renewable Energy Laboratory (NREL) developed the Electric Vehicle Infrastructure Projection Tool (EVI-Pro) in collaboration with the California Energy Commission to estimate regional requirements for charging infrastructure. It uses EV market projections and real-world travel data to estimate future requirements, under various scenarios, for residential, workplace, and public charging. Model outputs include: anticipation of spatial/temporal consumer demand for charging, weekday/weekend travel behavior, and regional differences in travel behavior and vehicle adoption. A user-friendly, simplified version of EVI-Pro is available online. The EV Infrastructure Location Identification Tool (ILIT) was developed by M.J. Bradley & Associates and the Georgetown Climate Center, to support North Carolina, and other states in the Northeast and the Mid-Atlantic region. The tool generates direct-current (DC) fast charging development suitability rankings for exits along designated highway corridors in the region. The tool also offers assistance for future charging infrastructure development planning. The model is free online.
3. HYBRID APPROACH

A hybrid approach is when both stakeholder participation and technical modeling with limited available data is applied in the planning. Modeling results are usually applied to transform sizable data into human-interpretable siting suggestions for the area, and then local knowledge is used to verify and refine the siting solution from the model, while taking into account stakeholder inputs and site-specific factors.

An advantage of the hybrid approach is that it makes initial planning for bigger areas more manageable by employing a small group of modelers, rather than a large gathering of stakeholders. In the later phase before implementation, stakeholder engagement and local knowledge will still be needed to fill in the gaps between the modeling results and reality.

The City of Columbus, Ohio in the United States successfully used the hybrid approach in planning their charging infrastructure locations. In Columbus, officials used the model EVI-Pro developed by the National Renewable Energy Laboratory (NREL) with available data combined with a series of stakeholder meetings for identifying locations and siting for charging infrastructure.

The City of Columbus’ approach, as described in the Box, illustrates the hybrid approach. First, Columbus used EV registration data to determine EV travel origins. Anonymous GPS travel data that originated from the EV travel origins, acquired from third parties, were used as inputs for EVI-Pro model. The model simulates EV travels based on the inputs and delivers results on how many charging units are needed for different purposes. The results are processed to identify 300 hot spots that indicate future demand for non-residential L2 charging. These hot spots, represented on the map as 500-meter-diameter bubbles, are where EVs were simulated to be frequently parked for long durations at low battery “state of charge” (SOC) levels. These bubbles, coupled with data such as parking meter collection data, can give the initial candidate locations for charging stations.

Workshop and stakeholder meetings were then conducted to put in local knowledge to finalize the locations and siting. The planning process took roughly six months, of which the initial data processing consumed a significant amount of the time.

Smart Columbus

Smart Columbus is an initiative for the Columbus Region. Columbus, Ohio competed against 77 other US cities to win the Smart City Challenge in 2016. With this initiative, Columbus is transforming its transportation system and aggressively growing the electric vehicle market. One of the many projects underway is the expansion of EV charging stations, and to date, 1,068 charging ports have been installed. More information can be found in the playbook published on the Smart Columbus website.
Figure 1 Process Flow of Charging Infrastructure Location/Site Identification for Smart Columbus.

Engage & Educate,
Define goals and visions

- Trip origin
 - Residence

 Use vehicle registration data to identify residential EV hotspots

- Trip destination

 Identify likely EV destinations using data and local knowledge

- Good candidates
 - for charging locations

- Identify convenient charging locations, e.g. close to origin/destination, mid-trip (inter-city trips)

- Identify existing and planned EV charging locations and their usage

Is more charging needed?

- Yes
 - Potential workplace charging
 - Refer to workplace charging initiative

- No

- Yes
 - Potential public charging
 - Identify locations with consumer attractions and ease of access
 - Power available?
 - Yes
 - Select L2 or DCFC
 - Rank locations based on expected usage, cost, critical need and committed partners
 - No
 - Do not locate a charger here

 - What does it cost to supply power?

 Source: NRDC adopting Smart Columbus information
CONCLUSIONS AND RECOMMENDATIONS

Planning for public charging infrastructure is essentially answering where and how many of what type of chargers should be placed in the planning area. This factsheet focuses on the where perspective. We present three approaches that can be used for EV location and site selection: local-knowledge stakeholder, modeling, and hybrid.

Leveraging local knowledge in the stakeholder approach works for small-scale planning. However, for larger-scale regional or city-wide planning, models can be used to process available data into initial location recommendations, reducing the human resources needed.

For planning in big cities or regions in India (mainly the million plus cities as per 2011 census or the smart cities notified by Ministry of Housing and Urban Affairs), the hybrid approach of modeling and local knowledge may work best. An initial modeling phase will help deliver a data-based, transparent selection of possible locations. Seeking potential collaborations with research institutions and data collectors, such as Google may greatly accelerate the modeling work. Later, stakeholder engagement and human decisions will ensure the selections are viable in the real world, and that sites are selected with holistic engineering, economic, and policy considerations.

IMAGE CREDITS: CHARU LATA, NRDC
APPENDIX 1: SAMPLE MATERIALS FOR LOCAL KNOWLEDGE APPROACH WORKSHOP
(Source: British Columbia Tool Kit)

A. LIST OF MATERIALS FOR PLANNING WORKSHOP

1. List of stakeholders
2. Agenda
3. Location and site exercise
4. Location criteria rating sheet
5. Rating sheet for proposed locations
6. Rating sheet for preferred sites
7. A map or maps showing: Planning boundaries, existing EV charging stations, major or minor roads, transportation hubs, institutional land used, commercial uses, gas stations, parking facilities, future growth areas, jobs density, high density residential areas, publicly owned properties, aerial photograph or satellite imagery, and five-kilometer grid for larger area planning
8. Presentation material

B. LIST OF STAKEHOLDERS

1. Government in the planning area
2. Business owners in the area
3. Land developers and owners
4. Utility
5. Institutions
6. Tourism, chamber of commerce and economic development representatives
7. EV owners
8. General public
9. Adjoining regional districts

C. WORKSHOP AGENDA TEMPLATE

1. Welcome and introductions (15-30 mins)
2. Learning from others (30-60 min)
3. Government and utility perspectives (30 mins)
4. Opportunities and challenges (30 mins)
5. Plan vision and goals (30 mins)
6. Review location criteria (15-30 mins)
7. Review roles and responsibilities of the government, residents, businesses and institutions (30 mins)
8. Charging station location exercise (60-90 mins)
9. Rating and ranking of proposed locations against criteria, vision and goals (30-60 mins)
10. Identification of possible sites for top rated locations (30-60 mins)
11. Summary and next steps (15 mins)

D. LOCATION AND SITE CRITERIA WORKSHEET

Workshop attendants can take around an hour to consider possible charging station locations. The goal is that each one can identify 8-10 possible charging station locations for detailed technical evaluation. Table below, as an example, can be used to note thoughts on possible locations, their role in the area and site-level information. At this stage, site-level information needs not to be complete.

<table>
<thead>
<tr>
<th>Possible Location</th>
<th>Community centers/Destination</th>
<th>Major employment center</th>
<th>Major retail center</th>
<th>Highly Visible (Intersection, Major road, etc.)</th>
<th>High density residential area</th>
<th>Future Growth Area</th>
<th>Publicly owned site</th>
<th>Source of power nearby</th>
<th>Secure, well-lit, visible</th>
<th>Not on hill</th>
<th>Available 24 hours</th>
<th>Above ground</th>
<th>Easy access and egress</th>
<th>Sheltered and ventilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Library</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
<td>Mostly</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Mostly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
E. RANKING SHEET OF LOCATIONAL CRITERIA

This table helps planners to define short term and long-term goals. Ratings can be assigned as, for example, very important (3), important (2), and less important (1).

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Short term</th>
<th>Long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to see and find</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Something else to do nearby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-benefits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local economic development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green branding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Avoidance of conflicts for parking
- Even distribution throughout
- Emphasis on future growth areas

F. RATING OF POSSIBLE LOCATIONS/SITES

Locations and sites can be ranked to refine initial selections down to desired numbers. They can be rated simply with, very promising (3), promising (2), and less promising (1). It is also possible to use more complex rating method directly taking into account the individual criteria.

<table>
<thead>
<tr>
<th>Location No.</th>
<th>Possible location/address</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Possible site</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMAGE CREDITS: CHARU LATA, NRDC
G. INSTALLATION FLOWCHART FOR PUBLIC CHARGING

Utility Considerations
1. EV Rate Structure
2. Availability of Power
3. Metering
4. Total Load Management
5. Smart Grid
6. Level 2 and/or 3 Charging
Other Requirements?

Consultation with Utility

Consultation with Ev Enthusiasts

Consultation with EV Supplier and EVSE Supplier

Consultation with Local Business Owners

Consultation with Electrical Contractor

EV/PHEV Promoter/Property Owner

Site Plan Developed

Obtain Permits

Conduct Installation

Installation Completed

Final Inspection and Approval

Consultation with Governing Authority

Consultation with Utility

Consultation with governing Authority

Consultation with Governing Authority

Governing Authority Considerations
1. Public Planning
2. Funding/Grant Requirements
3. Public Siting Locations
4. Traffic Patterns
5. Public Street Signage
6. Other requirements?

OEM Consideration
1. Level 2 or 3 Charging
2. Current and Future EV needs
3. Determination of number of chargers required
4. Determination of location of parking areas
5. Determination of electrical loads
6. User Payment Options

Enthusiasts Considerations
1. Location
2. Promotion/advertising

Business Owner Consideration
1. Quantity of EVSE
2. Location of EVSE Station(s)
3. Ownership concerns
4. Cost Sharing
5. Maintenance Responsibilities
6. User payment for service
7. Vandalism
8. Lighting/shelter
9. Advertisement

Contractor Considerations
1. Proximity to Utility Service Panel
2. Standing Water/Flood issues
3. Safety and accessibility Considerations
4. Avoidance of tripping hazard
5. Installation meets Building Code Requirements
6. Additional lighting requirements

Contractor Considerations
1. Drawing of EVSE location
2. Electrical plan including new circuit
3. Additional meter requirements if necessary
4. Concrete cutting, trenching, landscape considerations
5 Contractor Estimate

Approving Authority Considerations
1. All Building Codes satisfied
2. Qualified and certified contractor

Utility Service Upgrade Completed
APPENDIX 2: LITERATURE REVIEW OF MODELS FOR IDENTIFYING CHARGING INFRASTRUCTURE LOCATIONS AND SITES

PLANNING OF CHARGING INFRASTRUCTURE

From the perspective of what is being considered in planning, research has been done with different types of charging facilities, types of vehicles, scale of planning, data sources, and constraints.\(^{27}\)

1. MODES OF CHARGING

While the most commonly treated case is normal/slow charging stations, there are many articles on new/alternative technologies. Some studies consider fast charging.\(^{28}\) Battery switching stations are considered in some.\(^{29}\) Some consider non-traditional types such as mobile charging (Yang et al., 2012) and mobile switching (Huang et al., 2014) stations.\(^{30}\) In some, mixed types of charging facilities are taken into consideration altogether.\(^{31}\)

2. TYPES OF VEHICLE

Usually planning studies are targeted for private EV drivers, but we can also see solutions proposed for company fleet vehicles (Yang and Sun, 2015), taxis (Ko and Shim, 2016), buses (Zheng et al., 2013), and scooters (Wang and Lin, 2013).\(^ {32}\)

3. SCALE OF PLANNING

There are some theoretical studies that only demonstrate the feasibility of the proposed method with artificial examples.\(^ {33}\) Most studies use real data from areas of different sizes, such as parts of cities (Sadeghi-Barzani et al., 2014), cities (Bernardo et al., 2016), regions (Mak et al, 2013), islands (Wang, 2007), and states (Chung and Changhyun, 2015).\(^ {34}\)

4. DATA INPUTS USED

Different methods vary in the aspects that are considered for determining suitable locations for charging stations. Most models include the user’s demand for EV charging. However, many different indicators are used to quantify and locate this demand. Data is used, often in combination, in studies, including demographic data (Namdeo et al., 2014; Koyanagi et al., 2001), building data (Namdeo et al., 2014), vehicle registration data (Koyanagi et al., 2006), proximity to major transit connections (Koyanagi and Yokoyama, 2010), traffic data (McPherson et al., 2011; Bernardo et al., 2016), and parking data (Capelle, 2010).\(^ {35}\)

5. CONSTRAINTS

Besides meeting the demand for charging, other factors are also taken into account, and can affect the outcome. For example, the impacts on the electricity distribution grid from planned charging infrastructure (Phonrattanasak and Leeprechanon, 2012; Jamian et al., 2014; Sadeghi-Barzani et al., 2014), and the economic feasibility from costs of connection, construction and operation can all be constraining factors (Wang, 2007; Mak et al., 2013; Tang et al., 2013).\(^ {36}\)

METHODOLOGICAL APPROACHES

From the perspective of methodological approaches, studies use different ways of modeling spatial entities, look for discrete or continuous location choices, vary in level of formalism, and use different mathematical tools.

1. MODELING OF SPATIAL ENTITIES

It is common to model demand and supply in the form of points.\(^ {37}\) Studies suggest that areas can be represented either unevenly sized (Namdeo et al., 2015) or with a raster (Koyanagi et al., 2006), or at the cost of information loss, transformed into points by using the centroids of the areas (Tang et al. 2013).\(^ {38}\) For road networks, it is common to use graphs.\(^ {39}\)

2. DISCRETE OR CONTINUOUS LOCATION CHOICES

In a discrete case, the potential locations for charging stations are predefined. Usually existing infrastructure locations such as cities within a road network (Wang and Wang, 2010), road junctions/intersections (Bernardo et al., 2016), parking lots, or gasoline stations (Wang et al., 2010) are used as candidate locations.\(^ {40}\) In the continuous case, EV charging stations can be located anywhere within the given area.\(^ {41}\)

3. LEVEL OF FORMALISM

Charging infrastructure siting can be done pragmatically with local knowledge and informal ad-hoc approaches, and leave space for intuitive decisions. More formally, decisions can be loosely based on overlay analysis of geographic data. Mathematically formalized methods predominate scientific literature. Location choice is commonly formulated as an optimization problem.
4. MODELING APPROACHES

When formulated as a (mixed) integer linear problem, concepts such as the p-median problem (Ko and Shim, 2016), p-center problem (Jia et al., 2014), set covering (Wang and Wang, 2010), and flow refueling location model (Kuby and Lim, 2005) can be used.\[42\]

Heuristic approaches that have been applied to the location planning of EV charging infrastructure include particle swarm algorithms (Tang et al., 2013), genetic algorithms (Sadeghi-Barzani et al., 2014), bee colony algorithms (Jamian et al., 2014), ant colony optimization (Phorntattanasak and Leeprechanon, 2012), or greedy algorithms which sequentially decide the next optimal location (McPherson et al., 2011; Wagner et al., 2014).\[43\]

Another approach to finding good locations is to perform a spatial cluster analysis of data representing the demand for charging.\[44\] A further possibility is to model location choice within the framework of game theory, where a good combination of locations corresponds to a game theoretic equilibrium.\[45\]

Several authors have implemented simulations of EV mobility and charging which allowed them to also analyze locations of charging infrastructure. Existing traffic models have been extended (Hess et al., 2012; Gonzalez et al., 2014; Hiwatari et al., 2014) and new agent-based models have been implemented (Sweda and Klabjan, 2011; ElBanhawy et al., 2014).\[46\] The advantage of using simulation is that it allows to model the diverse aspects that determine individual EV drivers’ need for charging in more detail. Instead of using static land use data or single trip data, trip chains can be modeled. Such simulation models can serve to identify areas of high charging demand (Gonzalez et al., 2014; Hiwatari et al., 2014; ElBanhawy et al., 2014) or evaluate given alternative charging infrastructure layouts (Sweda and Klabjan, 2011; Hoerstebrock and Hahn, 2014).\[47\] Going a step further, in a simulation-optimization approach, the location plan is repeatedly changed and the simulation reperformed, in order to find an optimal layout.\[48\]
ACKNOWLEDGEMENTS

Our sincere thanks to Simon Mui, Senior Scientist, NRDC, Vivek Chandran, Program Manager (Transport), Shakti Sustainable Energy Foundation, Val Hovland, Founder and Principal, Hovland Consulting LLC, Nitish Arora, Research and Policy Lead, Ola Electric Mobility Pvt. Ltd., Rajkiran Bilolikar, Associate Professor, ASCI, and Akhilesh Magal, Head - Advisory and Consulting Group, GERMI for their review comments. Special thanks to Anjali Jaiswal, Yanbo Shu, and Charu Lata, NRDC for contributing to the research for this issue brief. We also greatly value the contributions of the following NRDC, ASCI and GERMI staff: Jessica Korsh, Madhura Joshi, Leah Stecher, and Kim Knowlton, NRDC; Rajani Mall, ASCI, and Akash Davda, GERMI. The authors are grateful to the funders of our work for their generous support.

ABOUT THE ADMINISTRATIVE STAFF COLLEGE OF INDIA

Established in 1956 at the initiative of the government and the corporate sector, the Administrative Staff College of India (ASCI), Hyderabad, has pioneered post-experience management education in India. ASCI equips corporate managers, administrators, entrepreneurs and academicians with the skills to synthesize managerial theory and practice; and respond to the ever-increasing complexity of managerial issues confronting government, industrial enterprises and non-government organizations.

https://asci.org.in

ABOUT THE GUJARAT ENERGY RESEARCH & MANAGEMENT INSTITUTE

Gujarat Energy Research & Management Institute (GERMI), Gandhinagar is a centre of excellence in the energy sector, promoted by Gujarat State Petroleum Corporation Limited (GSPC), a Government of Gujarat Undertaking. GERMI has four mandates, namely, research and development, consultancy, training and education. It's work bridges both the petroleum and renewable energy sectors. GERMI aims towards improving the knowledge base of policy makers, regulators and provides a competitive edge to industry leaders to compete in the global arena.

https://www.germi.org/about-organisation.php

ABOUT THE NATURAL RESOURCES DEFENSE COUNCIL

The Natural Resources Defense Council (NRDC) is an international non-profit environmental organization with more than 3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC’s India Program on Climate Change and Clean Energy, launched in 2009, works with local partners to help build a low-carbon, sustainable economy.

https://www.nrdc.org; Twitter @NRDC_India
1. 30% EV penetration implies EV sales penetration of 30% for private cars, 70% for commercial cars, 40% for buses, and 80% for 2 and 3 wheelers by 2030. Niti Aayog, Rocky Mountain Institute, “India's Electric Mobility Transformation – Progress to Date and Future Opportunities”, April 2019, https://.rmi.org/wp-content/uploads/2019/04/rmi-niti-ev-report.pdf.

10. Private/Captive charging/swapping stations imply cases where the charging service provider restricts the user of the technology under consideration from freely accessing the station at all times; Public charging stations on the other hand are stations that are accessible to everyone at all times.

13. Ibid.

15. Ready for installation implies that the building has conduits and electrical connections in place and would be able to charge EVs as soon as the charging infrastructure is installed.

16. As per Hainan’s target, EV:EVSE ratio is 1:1 by 2030 (EVSE includes both public and private chargers).

21. Ibid.

22. The City of Columbus, Smart Columbus, https://www.columbus.gov/smartcity/.

27. Ibid.

36. Prakornchai Phornrattanasak, Nopbhorn Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid,” International Journal of Innovation, Management and Technology 3.6 (2012): 675; Jamian et al., Simulation Study, 592-601, supra Note 29; Sadeghi-Barzani et al., Optimal Fast Charging Station,

43. Tang et al., Optimal Planning of Electric Vehicle Charging Stations, 2013, supra Note 36; Sadeghi-Barzani et al., Optimal Fast Charging Station, 289-299, supra Note 34; Jamian et al., Simulation Study, 592-601, supra Note 29; Phonrattanasak and Leeprechano, Residential Distribution Grid, 675, supra Note 36; McPherson et al., Battery-Switch Network; 2011, supra Note 29; Sebastian Wagner, Tobias Brandt, Dirk Neumann, “Smart City Planning-Developing an Urban Charging Infrastructure for Electric Vehicles,” 2014.

HIGHLIGHTED BLOGS

HIGHLIGHTED REPORTS

- Air pollution in Pune: Research and Evidence for Developing the Pune Air Information & Respond (AIR) Plan.

- CHINA: Analysis on Developing a Healthy Charging Service Market for Electric Vehicles in China

- Clearing the Air: Highlighting Actions to Reduce Air Pollution in India.

- US: Guiding Principles for Utility Programs to Accelerate Transportation Electrification