February 26, 2018

Dr. Howard Zucker
Commissioner
New York State Department of Health
Corning Tower
Empire State Plaza
Albany, NY 12237

Re: Setting a Maximum Contaminant Level for Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS)

Dear Commissioner Zucker and Members of the Drinking Water Quality Council:

We write on behalf of the Natural Resources Defense Council (NRDC) to request that the Drinking Water Quality Council make recommendations, and the New York State Department of Health Department act, to establish an enforceable MCL\(^1\) for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) at a combined concentration level between 4 to 10 parts per trillion (ppt). With PFOA and PFOS found in drinking water sources across New York State, and with numerous studies linking these contaminants to serious health risks including cancer, we believe that New York State must take additional affirmative steps to limit human exposure to PFOA and PFOS.

The Natural Resources Defense Council is an international nonprofit environmental organization with more than 3 million members and online activists, including nearly 40,000 members in New York State. Since 1970, NRDC has been a leading advocate for drinking water protection, both in New York and nationally. NRDC led efforts to strengthen the Safe Drinking Water Act in the 1986 and 1996 Amendments, spearheaded national campaigns for more protective EPA drinking water rules for microbial contaminants and toxic chemicals, and sued to improve EPA’s lead in drinking water standards. Here in New York, NRDC has for more than 25 years been a principal advocate for pollution prevention and watershed protection for the Catskill and Delaware watersheds, which provide drinking water to more than nine million downstate residents. In addition, NRDC brought Clean Water Act litigation that led to the establishment of TMDL pollution standards in New York’s upstate reservoirs and other state waterbodies. And NRDC played an important role in the successful public campaign leading to Governor Andrew Cuomo’s announced ban on fracking, which avoided a major water quality threat to water supplies across the state.

\(^1\) Maximum contaminant level (“MCL”) means the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. 10 NYCRR § 5-1.1.
We welcome the establishment by Governor Andrew Cuomo of the new Drinking Water Quality Council. Directing this Council to, among other things, recommend MCLs to the New York State Department of Health (the “Department”) for PFOA and PFOS is an important step by the Governor to address this drinking water problem. As the Governor recognizes, PFOA and PFOS contamination has become a serious public health crisis in New York and across the country. Blood serum concentrations of PFOA and PFOS have been found to be about ten times the national average in Hoosick Falls. In addition, elevated levels of PFOA and PFOS have been discovered in New Windsor, Fort Drum, Hempstead, Petersburgh, Newburgh, Hampton Bays, Cambridge, and Yaphank, and likely occur in other communities across the state.

In the absence of federal safeguards, New York State must act to protect drinking water, reduce risks to the public, and remediate the contaminated drinking water sources. The current situation requires swift adoption of a stringent combined MCL for PFOA and PFOS, due to the profound effects related to exposure, the very long periods that PFOA and PFOS are present in water absent filtration, and the very long half-lives that result in continued elevated blood serum levels even after exposure ceases.

Over the course of the past year, NRDC has conducted a detailed review of PFOA and PFOS contamination. As part of this effort, we have retained an expert consultant, Judith Schreiber, Ph.D., to make recommendations regarding the appropriate MCL and actions that

[hereinafter PFOA Found in 94 Public Water Systems in 27 States].
4 OCCURRENCE DATA FOR UCMR 3, supra note 3; see also PFOA Found in 94 Public Water Systems in 27 States, supra note 3.
6 Kenneth C. Crowe II & Lindsay Ellis, Petersburgh Water Tainted with PFOA, Tests Show, TIMES UNION (Feb. 20, 2016), http://www.timesunion.com/local/article/Petersburgh-water-tainted-with-PFOA-tests-show-6844326.php (noting the existence of PFOA levels of 93.3 and 95.9 ppt); see also Lyons, EPA Sets New Level, supra note 5.
7 OCCURRENCE DATA FOR UCMR 3, supra note 3.
10 Id.
the state may take to safeguard public health. As is set forth in more detail below, NRDC makes the following three requests:

1. The Drinking Water Quality Council should recommend that the Department establish an enforceable MCL for PFOA and PFOS at a combined concentration below 4 – 10 ppt.

2. The Drinking Water Quality Council should look closely at the potential harms of feeding infants with breastmilk or formula or of pregnant mothers consuming water contaminated with PFOS and PFOA, and recommend that the Department include in notifications to residents with contaminated water supplies that infants and pregnant mothers’ fetuses are especially vulnerable to PFOA and PFOS exposure through these channels.

3. The Drinking Water Quality Council should recommend that the Department conduct a comprehensive health assessment of residents in communities found to have elevated PFOA or PFOS concentrations in drinking water to help New Yorkers across the state understand the health risks associated with these chemicals.

Attached to this letter is a report prepared by Judith Schreiber, Ph.D., former Chief Scientist at the Environmental Protection Bureau of the New York State Office of the Attorney General and former Section Chief of Environmental Research at the New York State Department of Health. Dr. Schreiber’s report has formed the basis for the recommendations that are contained in this letter.

In the remainder of this letter, NRDC sets forth the reasons for these recommendations in more detail. In Part I, we highlight how PFOA and PFOS have entered the environment. In Parts II and III, we summarize the threats of PFOA and PFOS to human health. In Part IV, we describe the existing legal framework for regulating PFOA and PFOS and its deficiencies. And in Part V, we explain our recommendations to the Drinking Water Quality Council in more detail.

I. BACKGROUND

A. PFOA and PFOS are synthetic compounds that were widely used in consumer and industrial products until very recently

PFOA and PFOS12 are manufactured perfluorinated chemicals (PFCs) that have been widely used in consumer and industrial settings.13 Since the 1960s, manufacturers used PFOA or

PFOS in a variety of products, including nonstick cookware (e.g., Teflon), stain-resistant repellents used on carpets and fabric (e.g., Scotchgard and Stainmaster), paper and cardboard food packaging (e.g., fast food wrappers), firefighting foam, textiles (e.g., Gore-Tex), toothpaste, shampoos, cosmetics, polishes and waxes, and many products for the aerospace, automotive, construction, and electronic industries.15

B. PFOA and PFOS are highly persistent in the environment

While PFOA and PFOS do not occur naturally in the environment, due to widespread use of these two chemicals, PFOA and PFOS are now ubiquitous across the planet, present in rivers, soil, air, house dust, food and drinking water from surface and groundwater sources. PFOA and PFOS are extremely persistent in the environment, meaning they are resistant to environmental degradation.16 They can thus move through the soil and into groundwater and remain there for many years.17 As a result, although American manufacturers have stopped producing PFOA and PFOS, they remain in the environment, seeping into groundwater and staying there.

C. PFOA and PFOS are found in drinking water systems across the United States, including in New York

PFOA and PFOS have been detected in drinking water supplies across the country, in 33 states, 3 territories, and one indigenous community, contaminating the water supplies of nearly 16.5 million people.18 Exceedances of EPA’s health advisory limit of 70 ppt have been detected in Alaska, Arizona, California, Colorado, Florida, Illinois, Indiana, Kentucky, Massachusetts,
Michigan, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Texas, and Vermont. High levels of PFOA and PFOS in drinking water are strongly associated with proximity to major PFOA industrial sites, civilian airports, and military fire training areas.

As a manufacturing center since the 1940s, New York State has served as the site for several factories that have handled and disposed of PFOA. Notably, in Hoosick Falls, the Saint-Gobain Performance Plastics plant manufactured material coated with Teflon. In Petersburg, the Taconic Plastics plant also used PFCs in its manufacturing processes. In addition, the military used firefighting foam containing PFOA and PFOS on numerous military bases across the country, including in Newburgh. Local fire departments across the state, such as the Hampton Bays Fire Department, also used firefighting foam containing PFOS. As a consequence, elevated levels of PFOA and PFOS have been found in drinking water throughout

20 Hu et al., Detection of PFASs, supra note 18, at 345.

New York, including in New Windsor, Fort Drum, Hempstead, Petersburgh, Hoosick Falls, Newburgh, Hampton Bays, Cambridge, and Yaphank. We do not believe that most of New York State’s water supplies are contaminated with PFOA or PFOS; however, the sources that are contaminated are likely to be significantly elevated. It is likely that PFOA and PFOS contamination is more widespread in New York than we are aware of at present, since only a limited number of water systems have been tested for PFOA and PFOS to date. Until a comprehensive statewide survey of drinking water sources is conducted, we cannot know the full extent to which populations are exposed.

II. PFOA AND PFOS ARE PRESENT IN ALMOST ALL HUMANS, AND ONCE PRESENT, DO NOT DEGRADE FOR YEARS

Both PFOA and PFOS are known to bioaccumulate in the body of people of all ages, even before birth. Once ingested or inhaled, PFOA and PFOS accumulate in the blood serum for long periods of time, as PFOA and PFOS have half-lives of several years. The breakdown of other related chemicals can also form PFOA and PFOS. As such, PFOA and PFOS are present

25 OCCURRENCE DATA FOR UCMR 3, supra note 3; see also PFOA Found in 94 Public Water Systems in 27 States, supra note 3.
26 Id.
27 PFOA Found in 94 Public Water Systems in 27 States, supra note 3; Lyons, EPA Sets New Level, supra note 5.
28 Crowe & Ellis, supra note 6; Lyons, EPA Sets New Level, supra note 5.
29 Hoosick Falls Water Contamination, supra note 2.
30 OCCURRENCE DATA FOR UCMR 3, supra note 3.
32 Water Contamination in Washington County, supra note 9; Roman, PFOA, PFOS Discovered at Paper Composting Facility in Washington County, supra note 9. The combined level of PFOA and PFOS in these wells was below 70 ppt. Id.
33 Bill Walker & David Andrews, Drinking Water for 5.2 Million People Tainted by Unsafe Levels of PFCs, ENVTL. WORKING GRP. (May 23, 2016), http://www.ewg.org/enviroblog/2016/05/drinking-water-52-million-people-tainted-unsafe-levels-pfcss#.WdFD2q2BjE (providing data from EPA’s Unregulated Contaminant Monitoring) (providing data from EPA’s Unregulated Contaminant Monitoring); see also NYS DOH NEWBURGH FAQS, supra note 10; Lyons, EPA Sets New Level, supra note 5.
34 EPA estimates that the half-life of PFOA is 2.3 years. (The half-life is the time it takes to reduce the concentration by half.) For PFOS, the half-life is estimated to be more than 8 years. See DRINKING WATER HEALTH ADVISORY FOR PFOA, supra note 15, at 25; DRINKING WATER HEALTH ADVISORY FOR PFOS, supra note 15, at 25-26. See also U.N. ENV’T PROGRAMME, STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS, REP. OF THE PERSISTENT ORGANIC POLLUTANTS REVIEW COMM. ON THE WORK OF ITS TWELFTH MEETING, U.N. Doc. UNEP/POPS/POPRC.12/11/Add.22, at 1919-21 (Nov. 18, 2015) (discussing bioaccumulation of PFOA); ORG. FOR ECON. CO-OPERATION AND DEV., ENV’T DIRECTORATE, , HAZARD ASSESSMENT OF PERFLUOROOCTANE SULFONATE (PFOS) AND ITS SALTS, Doc. No. ENV/JM/RD(2002)17/FINAL, at 5 (Nov. 21, 2002) (discussing bioaccumulation of PFOS); see also Bioaccumulation, OXFORD ENGLISH DICTIONARY, http://www.oed.com/view/Entry/273970 (last accessed Oct. 1, 2017).
35 NYS DOH PFOA LONG FACT SHEET, supra note 12; EMERGING CONTAMINANTS FACT SHEET, supra note 12, at 2.
in the blood serum of almost every human around the world. Between 1999 and 2012, one or both of the chemicals were detected in 99 percent of the general population.36

Drinking water is a major source of exposure to PFOA and PFOS for people living in communities with drinking water contaminated with these chemicals. Other sources of PFOA and PFOS exposure include food, food packaging, consumer products, house dust, indoor and outdoor air, and workplaces where PFOA and PFOS are made or used.37

Even relatively low PFOA and PFOS concentrations in drinking water are associated with substantial increases in blood serum levels.38 Since the clearance of PFOA and PFOS from the body is slow and these contaminants accumulate in blood, after a long period of exposure, a person’s PFOA and PFOS levels in blood serum will be about 100 times greater than the PFOA and PFOS concentration ingested via drinking water.39

A. Fetuses and infants may be even more subject to exposure than adults

Fetuses and infants are likely more exposed to PFOA and PFOS than adults, and are also more sensitive to these contaminants.40 Almost all fetuses and infants will have some degree of exposure,41 including exposure as fetuses during pregnancy. In utero, fetuses share the same blood serum level of PFOA and PFOS as their mothers. For infants, exposure may be further elevated due to ingestion of contaminated breastmilk (a result of the mothers’ ingestion of contaminated water, and other sources) or infant formula prepared with contaminated drinking water.42

Levels of PFOA and PFOS in breastmilk are much higher than what is typically found in drinking water, as PFOA and PFOS bioaccumulate in the body and are then transferred into the breastmilk.43 PFOA and PFOS levels are higher in infant blood serum as it bioaccumulates from breastmilk exposure. Infants fed formula made from contaminated water are also at risk. Moreover, since infants and children consume more water per body weight than adults, their exposures may be higher than adults in communities with PFOA and PFOS in drinking water.44

36 EPA, DRINKING WATER HEALTH ADVISORY FOR PERFLUOROOCTANOIC ACID (PFOA), supra note 15, at 9; EPA, DRINKING WATER HEALTH ADVISORY FOR PERFLUOROOCTANE SULFONATE (PFOS), supra note 15, at 10.
38 SCHREIBER, supra note 11, at 9.
40 See infra Part III.C.
41 Post et al., Review of Recent Literature, supra note 39, at 100; NJ DOH FACT SHEET, supra note 37, at 1.
42 Id.
43 SCHREIBER, supra note 11, at 11–12; Debapriya Mondal et al., Relationships of Perfluorooctanoate and Perfluorooctane Sulfonate Serum Concentrations between Mother–Child Pairs in a Population with Perfluorooctanoate Exposure from Drinking Water, 120 ENVTL. HEALTH PERSPECTIVES 5, 752-57 (May 2012).
44 SCHREIBER, supra note 11, at 15.
III. PFOA AND PFOS ARE HARMFUL TO HUMAN HEALTH

The human health impacts of exposure to PFOA and PFOS is beyond question. PFOA and PFOS have profound effects on the young, are extremely persistent, are highly bioaccumulative, and are likely carcinogens. While the health effects of PFOA have been studied more frequently than those of PFOS, these two chemicals are sufficiently similar in structure that findings are reliably associated with the other.

A. PFOA and PFOS are likely carcinogens

Well-established scientific bodies have identified PFOA and PFOS as likely carcinogens, including the EPA Science Advisory Board, the International Agency for Research on Cancer, and the report of the C8 scientific advisory panel.

In a New Jersey community significantly exposed to PFOA through drinking water, PFOA was associated with higher incidence of kidney and testicular cancers. Blood serum median concentrations of PFOA in this study population was 28,000 ppt, very similar to the level of residents of Hoosick Falls, where blood serum median levels were 23,500 ppt. And studies of people working with and exposed to PFOA at high levels have shown associations between PFOA and prostate cancer, bladder cancer, kidney cancer, and testicular cancer.

In 2017, the Department conducted a limited health study in the Hoosick Falls community. While this very small study of Hoosick Falls residents found no link between PFOA exposure and testicular cancer, kidney cancer, prostate cancer or bladder cancer, the study’s sample size was extremely small and not inclusive of the entire exposed population.

45 Id. at 6, 14–18.
46 Id. at 6, 10.
47 Id. at 14.
52 DRINKING WATER HEALTH ADVISORY FOR PFOA, supra note 15, at 46; DRINKING WATER HEALTH ADVISORY FOR PFOS, supra note 15, at 42.
53 DRINKING WATER HEALTH ADVISORY FOR PFOA, supra note 15, at 9-10.
55 SCHREIBER, supra note 11, at 17.
Much more comprehensive studies have found strong correlations between PFOA exposure and several different types of cancer.56

\textbf{B. PFOA and PFOS are associated with other serious health effects}

In addition to several types of cancers, PFOA and PFOS have been linked to an array of other serious health effects, including:

- developmental effects to fetuses during pregnancy;
- developmental effects to babies during the neonatal period (from birth to one month of age) (e.g., low birthweight, skeletal variations);
- developmental effects during puberty (e.g., accelerated puberty, delayed mammary gland development);
- immune system effects (e.g., antibody production and immunity);
- neurobehavioral effects;
- liver effects (e.g., tissue damage);
- thyroid effects;
- metabolic toxicity;
- increases in cholesterol;
- increases in uric acid levels;
- endometriosis; and
- lower sperm quality.57

These findings are undisputed by EPA and other states. Notably, delayed mammary gland development has been found to occur at low levels of PFOA and PFOS, which may indicate that other hormonally-related effects may also occur at these low levels.58

\textbf{C. PFOA and PFOS may especially be harmful to fetuses, infants, and children}

As explained earlier, infants and children are more likely to be exposed to higher levels of PFOA and PFOS. Compounding this factor, fetuses, infants, and children are also vulnerable to more exposure-related health effects than adults. The young may be more sensitive to the effects of PFOA and PFOS due to their immature, developing immune system, and rapid body growth during development.59 In addition, as discussed in the attached Schreiber report,
exposure to PFOA and PFOS before birth or in early childhood may result in decreased birthweight, decreased immune responses, and hormonal effects later in life. PFOA and PFOS have also been linked to delayed mammary gland development, endometriosis, and reduced sperm quality.

IV. THE EXISTING REGULATORY FRAMEWORK IS INSUFFICIENT TO SAFEGUARD PUBLIC HEALTH

As Governor Cuomo has acknowledged, in light of the serious health risks posed by PFOA and PFOS contamination and the dearth of federal regulation of these two dangerous chemicals, New York State should implement an MCL for PFOA and PFOS as quickly as possible.

A. EPA’s efforts to regulate PFOA and PFOS have been inadequate to safeguard public health

While EPA has taken preliminary steps to address PFOA and PFOS, it has not done enough to protect Americans from exposure to these contaminants. EPA’s recent announcement of a cross-agency effort to address PFOA and PFOS shows no indication that any federal agency intends to set an enforceable standard regulating the presence of these chemicals in drinking water.

In 2009, the agency placed PFOA and PFOS on its drinking water Contaminant Candidate List, a list of unregulated contaminants that are known or anticipated to occur in public water systems and that may require regulation under the Safe Drinking Water Act.

In 2012, EPA listed PFOA and PFOS are listed as “unregulated contaminants,” under EPA’s Third Unregulated Contaminant Monitoring Rule, and as such, “large public water systems” were required to conduct some monitoring for PFOA and PFOS in their drinking water supply from 2013 to 2015, and, if levels exceeded 20 ppt, notify EPA. A low percentage of

60 SCHREIBER, supra note 11, at 14–16.
61 Id. at 16, 28.
small water systems also did EPA-funded monitoring, but around the country, only 800 public wells serving less than 10,000 people were selected for random PFOA and PFOS testing by EPA. The majority of villages and small towns were not tested for PFOA or PFOS under this rule, including areas that served as PFOA or PFOS manufacturing sites (e.g., Hoosick Falls and Petersburg, New York). Notably, public water systems that found PFOA and PFOS contamination were not required by EPA’s rule to either notify the public of the contamination, nor were they required by the rule to remediate the contamination. PFOA and PFOS were subsequently excluded from EPA’s Fourth Unregulated Contaminant Monitoring Rule in 2017, removing PFOA and PFOS from even these tepid directives.

By 2015, EPA worked with manufacturers of PFOA and PFOS to phase out the production of these two contaminants. While we believe PFOA and PFOS are not currently being manufactured or used in manufacturing in the United States, the manufacturing and use of these two contaminants is still not prohibited, and PFOA and PFOS are still present at dangerous levels in the environment.

In May 2016, EPA set a non-binding lifetime drinking water “health advisory” for PFOA and PFOS of 70 ppt. This advisory has prompted some public water suppliers around the country to begin testing their water for the presence of the compound, leading to numerous additional discoveries of dangerous levels of PFOA and PFOS in public drinking water. However, like all such advisories, this one serves only as guidance and is not a legally enforceable standard. Compliance with the EPA health advisory is purely voluntary and is taking place on an ad hoc basis. And since not all public water suppliers were required to test their water or report their findings, and since the federal testing requirements only applied from 2013 to 2015, we still do not know how systematic PFOA and PFOS contamination is around the country.

72 See Certain Perfluorooalkyl Sulfonates, 40 C.F.R. § 721.9582 (2017); see also 2010/2015 PFOA Stewardship Program, supra note 71.
73 DRINKING WATER HEALTH ADVISORY FOR PFOA, supra note 15, at 9; DRINKING WATER HEALTH ADVISORY FOR PFOS, supra note 15, at 10.
74 For example, the new PFOA HA has led to water contamination discoveries in Arizona, see Daniel Ochoa, Tempe Takes Corrective Action To Meet EPA Water Regs, WRANGLER NEWS (Jun. 3, 2016), http://www.wranglernews.com/2016/06/03/tempe-takes-corrective-action-meet-epa-water-regs, and Alabama. See Andy Szal, 100,000 Ala. Residents Told Not to Drink Water Due to Chemical Contamination, CHEM.INFO (Jun. 4, 2016, http://www.chem.info/news/2016/06/100000-ala-residents-told-not-drink-water-due-chemical-contamination.
75 DRINKING WATER HEALTH ADVISORY FOR PFOS, supra note 15, at 12.
Thus, EPA’s present regulatory posture regarding PFOA and PFOS is insufficiently protective of public health. The absence of an MCL allows government agencies, public water suppliers, and companies to defend their actions by simply saying that, even after the discovery of PFOA and PFOS in the water supply, they did all that was required under federal law.

B. In this regulatory vacuum, other states have implemented MCLs for PFOA and PFOS

In the absence of federal regulation, a number of states have already taken affirmative action to set MCLs for PFOA and PFOS. In early November 2017, New Jersey announced it would set an MCL for PFOA at 14 ppt,\(^76\) the most stringent enforceable standard in the nation. Vermont established a combined drinking water standard of 20 ppt for PFOA and PFOS.\(^77\) New Hampshire set an emergency groundwater quality standard of 70 ppt for PFOA, PFOS, or the two contaminants combined.\(^78\) Michigan, relying on EPA’s Health Advisory, set an enforceable combined drinking water standard for PFOA and PFOS at 70 ppt.\(^79\) Minnesota published new drinking water guidance levels for PFOA and PFOS at 35 ppt and 27 ppt, respectively.\(^80\) And California has added PFOA and PFOS to the list of chemicals known to cause reproductive toxicity under its Proposition 65 regulations.\(^81\) Pennsylvania has also announced it would consider regulating PFOA and PFOS in drinking water.\(^82\)

C. New York’s attempts to regulate PFOA and PFOS have been a step in the right direction but should go further

In light of recent drinking water contamination across the state, and in the absence of regulation at the federal level, New York State has taken steps to remediate the contamination on its own.83

Last year, New York passed the Clean Water Infrastructure Act of 2017. Among other things, the Act provides for:

- A requirement that the Commissioner of the Department of Health identify PFOA and PFOS as emerging contaminants;
- PFOA and PFOS monitoring in all covered public water systems;
- Establishment of the Drinking Water Quality Council, which can recommend emerging contaminants and contaminants that require MCLs;
- $3.5 million for assessments, testing, and abatement to address exposure to contaminants; and
- $500,000 for removal and disposal of PFOS foam.84

In September 2017, Governor Cuomo announced his appointees to the Drinking Water Quality Council and indicated that the Council’s first task would be to make recommendations to establish enforceable MCLs for PFOA and PFOS.85 This was welcome news. And it is now crucial for the Drinking Water Quality Council to recommend an MCL at a level sufficient to protect public health.

V. RECOMMENDATIONS

A. New York State should set an MCL between 4 – 10 ppt for combined concentrations of PFOA and PFOS

In light of the urgent need to protect human health from the dangers associated with PFOA and PFOS exposure, NRDC requests that the Drinking Water Quality Council make recommendations to establish enforceable MCLs for PFOA and PFOS at a combined concentration between 4 – 10 ppt. The setting of an MCL for these two contaminants is appropriate because PFOA and PFOS meet the test for regulating contaminants previously used by New York State. First, PFOA and PFOS may have an adverse effect on health. Second,

PFOA and PFOS are known to occur in public water systems in New York State with a frequency and at levels of public health concern. Third, control of PFOA and PFOS levels in drinking water using existing technology would reduce health hazards. Because concentrations above 4 – 10 ppt pose a risk to human health, the Drinking Water Quality Council should recommend a combined MCL at or below this level.

1. **New York State Regulatory Context**

The Commissioner of the New York State Department of Health has broad authority under the Public Health Law to regulate levels of contaminants in drinking water provided to state residents. This includes the authority to set MCLs for drinking water pollutants that present a public health concern. The State Sanitary Code does not provide for how the state should establish MCLs. But when the state established an MCL for methyl-tertiary-butyl-ether (MTBE), the Department of Health explained that an MCL for MTBE was justified because “[t]here is sufficient toxicological data to raise concern over the potential human health risks of MTBE in drinking water,” and MTBE contamination of drinking water supplies was widespread. In the MTBE rulemaking, the Department found three things in support of its finding to regulate MTBE. First, it found that public water supplies were contaminated by MTBE at levels that posed a public health risk. Second, the Department concluded there was sufficient toxicological data to raise concern over the potential human health risks of MTBE in water. Finally, the Department found that there was economically feasible technology available to remove the contaminant from drinking water, and that achieving the proposed MCL that would be health protective. For the reasons stated below, the Commission can and should make the same finding for PFOA and PFOS.

2. **PFOA and PFOS meet the factors for regulating drinking water contaminants set forth by New York State**

 a) PFOA and PFOS are known to occur in public water systems with a frequency and at levels of public health concern

As discussed above in Part I.C. of this letter, PFOA and PFOS are present in public water systems across the United States, including in New York. Notably, elevated levels of PFOA and PFOS have been found in drinking water throughout New York, including in New Windsor (at

80 Id.; 10 N.Y.C.R.R. § 5-1.51.
81 Id.
84 36 N.Y. REG., Rule Making Activities 13 (Sept. 10, 2003), available at https://docs.dos.ny.gov/info/register/2003/Sep10/pdfs/rules.pdf. The Department of Health relied on data from animal studies, as there was no data on the effects on humans of exposure to MTBE in drinking water. Id.
85 Id. (noting that “[t]he use of [MTBE] has unequivocally lead [sic] to ground water contamination,” as seen in a “[a]n extensive sampling program of public and private water supplies in the Northeastern United States”).
86 Id.
87 Id.
least 1 well at or above 70 ppt), 94 Fort Drum (2 wells with levels of 30 and 40 ppt, respectively), 95 Hempstead (at least 1 well at 50 ppt), 96 Petersburgh (1 well at 93.3 ppt and 1 sample of finished water at 95.9 ppt), 97 Hoosick Falls (at least 4 wells ranging between 150 – 540 ppt), 98 Newburgh (4 wells ranging between 140 – 170 ppt), 99 Hampton Bays (2 wells at 79100 and 82 ppt, respectively), 100 Cambridge (27 private wells above 70 ppt), 101 and Yaphank (15 private wells ranging from 87 – 2,670 ppt).

In addition, PFOA and PFOS are likely present in other public water systems in New York that have not been tested. There may also be other locations within New York State where drinking water has been tested but the data have not been made publicly available.

b) PFOA and PFOS may have an adverse effect on health

As discussed in Part III of this letter, the link between PFOA and PFOS and serious effects on human health is well-documented. PFOA and PFOS exposure has been linked to numerous serious health effects, including several types of cancer, and fetuses, infants, and children are especially sensitive to PFOA and PFOS exposure.

94 New York State Department of Health, New Windsor Area Private Perfluorooctanesulfonic acide (PFOS) Results (2016), available at https://www.health.ny.gov/environmental/investigations/newburgh/images/new_windsor_area_private_wells.png. See also OCCURRENCE DATA FOR UCMR 3, supra note 3; see also PFOA Found in 94 Public Water Systems in 27 States, supra note 3.

99 OCCURRENCE DATA FOR UCMR 3, supra note 3.

102 Matthews, supra note 8.

c) **Control of PFOA and PFOS levels in drinking water using existing technology would reduce health hazards.**

As discussed above in Part IV, the existing regulatory framework is insufficient to protect public health. PFOA and PFOS persist in the environment and in the body, posing an ongoing threat to public health. These chemicals cannot be removed during typical water treatment processes, nor will they degrade over time. People ingesting such contaminated water will continue to be exposed if contaminated water supplies continue to be used without appropriate filtration. Thus, an MCL is necessary to ensure that PFOA and PFOS are actively filtered out of drinking water in New York State.

Importantly, regulation of PFOA and PFOS would lead to a reduction of these contaminants in drinking water, as treatment to reduce PFOA and PFOS levels to between 4 – 10 ppt is achievable using currently available technology. EPA, in its Drinking Water Health Advisories for PFOA and PFOS, listed Granular Activated Carbon (GAC) filters and high pressure membrane systems (such as reverse osmosis) as effective methods of removing PFOA and PFOS from drinking water.105 They also suggest GAC point-of-use (faucet) filters for residential water treatment.106 These filters have already been used in Hoosick Falls107 and outside New York, in New Jersey,108 Colorado,109 Ohio,110 and Minnesota,111 significantly lowering PFOA and PFOS levels in drinking water. In Hoosick Falls, for example, all water samples collected since the installation of such water filtration equipment have consistently shown non-detectable levels of PFOA.112

Significantly, GAC should be considered a feasible technology for purposes of setting an MCL for PFOA and PFOS in New York. GAC is defined, as a matter of federal law in the Safe Drinking Water Act, as a “feasible” technology.113 Thus, because GAC is a feasible technology

105 **DRINKING WATER HEALTH ADVISORY FOR PFOA, supra** note 15, at 66; **DRINKING WATER HEALTH ADVISORY FOR PFOS, supra** note 15, at 59.
106 Id.
110 **NEW JERSEY DRINKING WATER QUALITY INSTITUTE, supra** note 108.
113 Section 1412(b)(4)(D) of the Safe Drinking Water Act states that “granular activated carbon is feasible for the control of synthetic organic chemicals, and any technology, treatment technique, or other means found to be the best
for removal of PFOA and PFOS (and some other PFCSs), New York should establish an MCL based on the level at least as stringent as GAC can achieve.

3. **New York State should adopt an MCL of 4 – 10 ppt for PFOA and PFOS**

New York State should develop a Maximum Contaminant Level for PFOA and PFOS in drinking water at a combined level of between 4 – 10 ppt. The scientific weight of evidence demonstrating adverse effects at very low levels of exposure is more than adequate to develop this MCL. Even extremely low levels of exposure to PFOA and PFOS may cause health effects, such as increased cancer risk and known serious adverse developmental effects. None of the federal and state assessments dispute the very serious effects associated with exposure to PFOA and PFOS at very low levels of exposure. However, they are still insufficient to be protective of human health. It is imperative that the most sensitive detection methods be employed so that the lower levels of PFOA and PFOS in water can be determined.

A Maximum Contaminant Level Goal (MCLG) is the maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health of persons would occur, allowing an adequate margin of safety. An MCLG is derived by first identifying the “most sensitive endpoint,” or the health effect that occurs at the lowest exposure level. This level is then adjusted by selecting and applying “uncertainty factors” in order to establish an appropriate margin-of-safety. Uncertainty factors are applied to provide an adequate safety margin between effects that are seen in animals and effects that may be experienced in humans. The selection of uncertainty factors often drives the setting of the MCLG, as it introduces large factors that scale down the acceptable dose to a dose that scientific analysis finds protective.

To establish the MCL, the concentration set forth in the MCLG may be adjusted up due to difficulties in measuring small quantities of a contaminant, a lack of available treatment technologies, or if EPA determines that the costs of treatment would outweigh the public health benefits of a lower MCL.

NRDC recommends the MCLG should be set at a level between 4 – 10 ppt. As explained in the attached report by Judith Schreiber, Ph.D., to protect infants and children at low doses, delayed mammary gland development should be identified as the most sensitive endpoint for

available for the control of synthetic organic chemicals must be at least as effective in controlling synthetic organic chemicals as granular activated carbon.” 42 U.S.C. §300g-1(b)(4)(D).

114 Schreiber, supra note 11, at 21–27.

PFOA and PFOS exposure,116 and should be used to derive a reference dose for the MCLG,117 as it was by states such as New Jersey.118

Also as explained in the attached report by Judith Schreiber, Ph.D., when deriving the MCLG for PFOA and PFOS, a combined uncertainty factor (“UF”) of 1,000 should be applied.119 This is necessary to be protective of public health to account for variation between people (especially accounting for the vulnerability of children) (“UF(H)”), animal-to-human extrapolation (“UF(A)”), and incomplete database (“UF(Data)”).120 As explained by Dr. Schreiber, the selection of uncertainty factors is a primary determinant for the variation in the EPA and state-level advisories. NRDC’s recommended combined uncertainty factor is higher than any of the uncertainty factors recommended by federal and state public health authorities, who have all applied combined uncertainty factors of 300, although for all different reasons.

As agreed upon by all state and federal authorities who established PFOA and PFOS advisories, an uncertainty factor of 10 should be applied to account for variability within people, particularly when accounting for differences in vulnerability based on age.121 All state and federal authorities, like NRDC, applied an uncertainty factor of 10 to account for human variation.

An uncertainty factor of 10 should also be applied to provide an adequate margin of safety when extrapolating animal data to humans (UF(H)). Here, EPA and other states only applied an uncertainty factor of 3. But as the Centers for Disease Control and Prevention observes, “without a better mechanistic understanding of both the toxicokinetics and toxicodynamics, it is difficult to relate the outcomes in animals to human health effects.”122 Indeed, there are substantial differences between humans and animals with regard to absorption and retention of PFOA and PFOS. Blood serum levels in people are much higher, and the half-lives are much longer, than in animals exposed to the same amount.123

116 Madisa B. Macon et al., \textit{Prenatal Perfluorooctanoic Acid Exposure in CD-1 Mice: Low-Dose Developmental Effects and Internal Dosimetry}, 122 TOXICOLOGICAL SCI. 1, 134-145 (Apr. 11, 2011), \url{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143465/pdf/kfr076.pdf}. The same study that identified delayed mammary gland development also identified increased liver weights at similar levels of PFOA and PFOS.

117 \textit{Id}. at 27 – 29.

118 N.J. DEP’T ENVTL. PROT., DRINKING WATER QUALITY INST., \textbf{MAXIMUM CONTAMINANT LEVEL RECOMMENDATION FOR PERFLUOROOCTANOIC ACID IN DRINKING WATER} (Mar. 15, 2017), \url{http://www.nj.gov/dep/watersupply/pdf/pfoa-recommend.pdf}.

119 \textit{Id}. at 4, 27, 29.

120 \textit{Id}. at 27 – 29.

121 \textit{See id}. at 27.

122 Centers for Disease Control and Prevention (CDC), \textit{Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): Information for Clinicians}, \url{https://www.youtube.com/watch?v=UWBFDt52D84}.

substantiates the need for a full uncertainty factor of 10, not 3, to provide an adequate margin of safety when extrapolating animal data to humans.\footnote{See Schreiber, supra note 11, at 28.}

Finally, an uncertainty factor of 10 should be applied due to lack of an adequate database (UF(Data)) to account for the fact that the toxicity database is incomplete and that there is no full assessment of potential harm that could occur at lower levels. Among the uncertainties are the relationships between hormonal variation, sperm quality, and testicular cancer in men; the relationship between blood serum levels, breastmilk concentrations, infant and child serum levels, and effects later in life such as endometriosis in women; and many other chronic conditions not yet evaluated. Further, the effects of the combined exposure to PFOA and PFOS are poorly understood. Immunotoxic effects have been identified, but have not been used in risk assessment for development of an MCL.\footnote{Id.} Noting these same gaps in the database, New Jersey also applied a UF(Data) of 10. EPA and Vermont declined to apply an uncertainty factor for an incomplete database, while Minnesota applied an uncertainty factor of 3.

State and federal authorities also differed as to the other uncertainty factors applied to account for other factors. When measuring developmental effects of PFOA, there was no level at which there were no effects (i.e., all dosing levels showed adverse effects on bone development and accelerated puberty in males). To account for the lack of a no effect level, an uncertainty factor of 10 was applied by EPA and the state of Vermont, but New Jersey and Minnesota applied no uncertainty factor to account for that factor.

The most analogous analysis to the one conducted by NRDC is that of New Jersey, which, like NRDC, applied an uncertainty factor of 10 to account for human variation, and an uncertainty factor of 10 to account for an incomplete database. Unlike NRDC, New Jersey only applied an uncertainty factor of 3 for animal-to-human extrapolation (as opposed to NRDC’s uncertainty factor of 10). If the combined uncertainty factor of 1,000 were used to provide an adequate margin of safety to New Jersey’s reference dose, New Jersey’s resultant guidance would also be 4 to 10 ppt.

Once the MCLG is derived, which we believe should be no greater than 4 – 10 ppt, the MCL should be as close to that level as feasible technology allows. Given that GAC is considered feasible technology under the federal Safe Drinking Water Act,\footnote{42 U.S.C. §300g-1(b)(4)(D).} and that GAC has been demonstrated to achieve PFOA and PFOS concentrations below detection levels (i.e., at concentrations below 4 ppt),\footnote{New Jersey Drinking Water Quality Institute, supra note 108, at 3 – 6.} we believe an MCL between 4 and 10 ppt is both appropriate and technologically feasible. Indeed, as discussed below, New Jersey has analyzed available treatment and monitoring technology and recommended an MCL for PFOA and PFOS of 14 ppt based on the feasibility of using GAC to achieve this standard.\footnote{N.J. Dep’t Envtl. Prot., Drinking Water Quality Inst., Maximum Contaminant Level Recommendation for Perfluorooctanoic Acid in Drinking Water (Mar. 15, 2017), available at http://www.nj.gov/dep/watersupply/pdf/pfoa-recommend.pdf.}
Therefore, to be protective of human health including fetal and childhood exposures, a combined uncertainty factor of 1,000 should be applied. We urge the Department and the Drinking Water Quality Council to rigorously study the choices of uncertainty factors and apply them with the utmost care to protect the citizens of New York.

B. The Drinking Water Quality Council should recommend that the Department include in notifications to residents with contaminated water supplies that infants are especially vulnerable to PFOA and PFOS exposure

In light of the heightened exposure of infants to PFOA and PFOS via breastmilk and formula, and the threats to pregnant women and their fetuses explained above in Part III.C. of this letter, the Council should carefully examine the potential health effects of PFOA and PFOS on fetuses, infants, and children when calculating the combined MCL.

Given the evidence that PFOA and PFOS are expected to be present in the breastmilk of mothers who have ingested PFOA and PFOS-contaminated drinking water, it is likely that there will be questions about whether it is advisable to provide breastmilk or infant formula to babies. Under the Clean Water Infrastructure Act of 2017, the Drinking Water Quality Council is responsible for making recommendations relating to the “form and content of public notifications” issued related to drinking water contamination129 and for developing educational materials regarding private well water testing. In accordance with this mandate, the Council should make sure to recommend inclusion of the special risks associated with feeding infants with contaminated breastmilk and formula so that caretakers can make informed decisions about how best to feed their children. The Council also should address particular risks to pregnant mothers and their fetuses. These are important personal decisions best made between the parents and the child’s pediatrician or, in the case of a pregnant mother, the parents and her obstetrician. It would also be helpful for an Advisory Board to be assembled to consider options and advice to mothers and doctors.

Furthermore, in accordance with the Clean Water Infrastructure Act of 2017, the Drinking Water Quality Council is tasked with recommending the appropriate use of, and methods and manner of conducting, biomonitoring and biomonitoring studies.130 In furtherance of this mandate, the Drinking Water Quality Council should provide breastmilk analysis for women who are nursing their infants if they are in an area known to have PFOA or PFOS contamination in drinking water.

C. The Department should conduct a comprehensive health assessment of residents in communities with elevated PFOA or PFOS concentrations to help both New York and the rest of the world understand the health risks associated with these chemicals

The Drinking Water Quality Council has also been given responsibility to recommend the appropriate use of, and methods and manner of conducting, biomonitoring and biomonitoring

130 Id. at § 1113(5)(f) (“Council shall make recommendations to [the Department] relating to . . . the appropriate use of and methods and manner of conducting biomonitoring and biomonitoring studies”).
studies. Consistent with this mandate, the Council should recommend that the Department of Health conduct a more comprehensive health assessment of exposed residents in communities found to have elevated PFOA and PFOS concentrations in drinking water. To ensure that New York State has set a sufficiently protective MCL, it is imperative that the Department use the information available in contaminated communities to learn more about the link between PFOA and PFOS and severe health effects. These studies should consider health effects in addition to cancer, such as effects on children’s health, pregnancy and birth outcomes, and other effects heretofore not evaluated. If other communities are found to have contaminated water supplies after the statewide drinking water survey is conducted, studies should be conducted for these populations, as well.

VI. CONCLUSION

NRDC thanks the Drinking Water Quality Council for the opportunity to comment on this important public health issue. Setting an MCL for PFOA and PFOS is long overdue. The serious adverse effects of exposure and the confirmed highly elevated drinking water concentrations cry out for the swift setting of a protective MCL. We urge the Council to complete its assessment on an expedited basis and to make its recommendations to the Governor without delay.

Sincerely,

Kimberly Ong
Staff Attorney
Natural Resources Defense Council

Eric A. Goldstein
Senior Attorney
Natural Resources Defense Council

131 Id.
PFOA EXPOSURE AND HEALTH RISK SYNOPSIS

prepared on behalf of the
NATURAL RESOURCES DEFENSE COUNCIL

By
Judith S. Schreiber
Schreiber Scientific, LLC

February 26, 2018
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 2

INTRODUCTION .. 5

I. EXPOSURE TO PFOA .. 8
 A. Presence of PFOA and PFOS in People .. 10
 B. Fetal and Infant Exposure ... 11
 C. PFOA Contamination in Hoosick Falls and Other NYS Locations 12

II. HEALTH RISKS ASSOCIATED WITH EXPOSURE .. 14
 A. Risks Associated with Effects on Fetal Development and the Young 15
 B. Cancer Risks ... 17

III. HEALTH ADVISORIES AND DERIVATION OF AN MCL FOR PFOA 18
 A. Uncertainty Factors in Risk Assessment ... 18
 B. Existing Advisories and Regulatory Standards .. 20
 C. Proposed MCL for PFOA and PFOS .. 25
 D. Summary ... 29

IV. RECOMMENDATIONS .. 30
 A. New York State Should Adopt an MCL for PFOA and PFOS in the range of 4 ppt to 10 ppt ... 30
 B. New York State Should Conduct a Statewide Comprehensive Survey of Drinking Water for PFOA .. 30
 C. New York State Should Conduct a Comprehensive Health Survey for Communities with PFOA Contamination ... 31
 D. New York State Should Create an Advisory Board to Consider Breastmilk and Infant Formula to Develop Recommendations to Mothers and Pediatricians 31

UNITS AND DEFINITIONS ... 33

REFERENCES ... 34

JUDITH S. SCHREIBER, Ph.D. ... 43
EXECUTIVE SUMMARY

Perfluorooctanoic acid (PFOA) is a member of the class of fluorinated substances called perfluorochemicals (PFCs). PFCs are part of a larger group of chemicals called poly- and perfluoroalkyl substances (PFAS), and includes perfluorooctane sulfonic acid (PFOS). These chemicals do not occur naturally, are resistant to environmental degradation and therefore persist in water, soil, dust, food, and other sources. With half-lives of several years, PFCs also persist in people and are found in the blood serum of almost all U.S. residents and populations worldwide. PFOA is among the most commonly identified of the PFCs, is often used in animal exposure studies, and is used in water analyses as a representative measure for combined PFC exposures.

Widespread use of PFCs has resulted in the ubiquitous presence of these chemicals in the environment including in rivers, soil, air, house dust, food, and in drinking water from both surface and groundwater sources. We are all exposed to small amounts by inhaling house dust from prior uses for water-repellent textiles (for example from treatment on upholstery) and from ingesting small amounts in food, food packaging, and drinking water.

Drinking water becomes the dominant source of exposure to PFCs for people living in communities with drinking water contaminated with these chemicals, far exceeding low levels of exposure from other sources. People exposed to PFOA contaminated drinking water will have higher levels of PFOA in blood serum due to persistence and bioaccumulation. After chronic exposure, blood serum levels will be about 100 times the level of PFOA in drinking water. For infants, PFOA exposure may be further elevated due to the ingestion of PFOA in breastmilk and from infant formula prepared with contaminated drinking water.
In experimental animals, PFCs have been found to cause developmental, immune, neurobehavioral, liver, endocrine, and metabolic toxicity, generally at levels well above human exposures to the general population. However, for people ingesting contaminated drinking water, PFOA concentrations may approach levels that increase risks for adverse effects.

Exposure to PFOA is associated with significant adverse health effects including developmental effects to fetuses during pregnancy, the neonatal period and puberty (low birthweight, skeletal variations, accelerated puberty, mammary gland development), cancer (testicular, kidney), liver effects (tissue damage), immune system effects (antibody production and immunity), thyroid effects and other effects (cholesterol changes). Effects on fetal development and the young have been studied in both humans and animals, which find similar adverse effects. PFOA and PFOS toxicological studies have found increases in tumors in rodents as well as in people. PFOA and PFOS are classified as likely carcinogens (chemicals that cause cancer) by the U.S. Environmental Protection Agency, the Science Advisory Board, the International Agency for Research on Cancer, and the Report of the C8 Scientific Advisory Panel.

Risk assessment for public health protection must account not only for what is known about a chemical’s adverse effects, but also what is not known about differences between toxic effects in animals compared to humans; children compared to adults; differences in absorption, metabolism and excretion; and other unknowns. Scientists use uncertainty factors to provide a margin of safety between levels that cause an adverse effect to levels that are deemed acceptable. We don’t want people to be exposed to levels that cause effects in animals. Uncertainty factors are applied to account for the adverse effects at a particular level of exposure, as well as incomplete understanding or availability of studies upon which toxicity is appraised.
Using the same database as the U.S. Environmental Protection Agency (USEPA) and the states, using mammary gland and developmental effects as the most sensitive endpoints, and applying a more protective combined uncertainty factor of 1,000 rather than 300, an MCL range of 4 to 10 ppt is derived. This range of MCLs is within the limit of detection for PFOA and PFOS (can be reliably measured), and within the capability of Granular Activated Carbon (GAC) to remove PFOA and PFOS (can be reliably removed), demonstrating the feasibility of an MCL as low as 4 ppt. Analytical testing should be conducted at levels as close to 1 ppt as possible.

New York State should adopt an MCL in the range of 4 ppt to 10 ppt for PFOA and PFOS combined exposure for the protection of public health based on known serious adverse health effects and increased cancer risks. The MCL should be periodically revisited to determine whether newer studies suggest the MCL to become more stringent.

In addition to adopting an MCL, we recommend that NYS conduct a comprehensive survey of drinking water sources, beginning with water sources near potential contributors to contamination such as PFOA/PFOS manufacturing and packaging facilities, fire fighting areas with a history of using PFOA/PFOS, landfills, and airports. We also recommend that comprehensive health surveys be conducted for communities with PFOA contamination. Finally, we recommend that the Drinking Water Quality Council form an Advisory Board to consider infant exposure to PFOA via breastmilk to develop recommendations for mothers and pediatricians.
INTRODUCTION

Perfluorooctanoic acid (PFOA) is a fluorinated eight carbon chain chemical member of the class of substances called perfluorochemicals (PFCs). PFCs are part of a larger group of chemicals called poly- and perfluoroalkyl substances (PFAS), and includes perfluorooctane sulfonic acid (PFOS). These chemicals do not occur naturally. PFOA and PFOS have been manufactured since the 1960s for use in coatings for clothing, leather, upholstery, and carpets; for fire-fighting foams; in paints, adhesives, waxes and polishes and other products; and industrially as surfactants, emulsifiers, wetting agents, additives and coatings (Ballesteros et al., 2017; Post et al., 2012; USEPA, 2016a).

PFOA and other PFCs including PFOS are resistant to environmental degradation and persist in the environment. They are relatively water-soluble, and have been detected in drinking water sources and in finished (treated) drinking water. Due to their water solubility, after exposure by any route, these chemicals are found in human blood serum rather than in body fat where fat-soluble chemicals such as PCBs reside. With half-lives of several years, PFCs persist in humans and are found in the blood serum of almost all U.S. residents and populations worldwide (CDC, 2015; Post et al., 2012). PFOA is among the most commonly identified of the PFCs, and is often used in animal exposure studies, and in water analyses as a representative measure for combined PFC exposures.

PFOA, PFOS and other PFCs are commonly found together in samples from contaminated water and are identified as co-contaminants in blood serum. These contaminants are structurally similar, and it is reported that the health risks associated with one PFC are expected for other PFCs as well (Lau et al., 2007; Lilienthal et al., 2017; Post et al., 2011). This
report will focus on PFOA, with mention of PFOS and other PFCs, where noted, because PFOA is the most commonly studied chemical of all of the PFCs.

While some scientific uncertainties exist, the human health impacts of exposure to PFOA and related chemicals are acknowledged to have profound effects on the young, are likely carcinogens, are extremely persistent, and are highly bioaccumulative. The weight of scientific evidence is substantial: in experimental animals, in exposed residential populations drinking contaminated water, and in occupational studies, that PFOA and related compounds cause effects on the young and increase cancer risks in exposed populations.

We do not believe that most of New York State’s water supplies are contaminated with PFOA; however, the sources that are contaminated are likely to be significantly elevated. Until a comprehensive statewide survey of drinking water sources is conducted, an estimate of the extent to which populations are exposed cannot be determined.

In the absence of federal safeguards, New York State must act to protect drinking water, reduce risks to the public and remediate contaminated drinking water sources. The current situation requires swift adoption of a stringent Maximum Contaminant Level (MCL) for PFOA, due to the serious effects related to exposure, the very long periods that PFOA and related chemicals will be present in water, and the very long half-lives that result in continued elevated blood serum levels in people even after exposure ceases.

This report contains four parts: Part I provides an overview of the presence of PFOA and PFOS in the general public and exposed populations. Part II identifies established health risks associated with exposure. Part III outlines existing PFOA and PFOS health advisories in drinking water and discusses a proposed MCL for New York State. Part IV offers
recommendations as to how New York can protect its residents from the health effects associated with PFOA and PFOS exposure.

The recommendations in this report are summarized as follows:

1. Due to increased cancer risk and known serious adverse developmental effects of exposure to PFOA and related chemicals, New York State should set a Maximum Contaminant Level (MCL) in the range of 4 to 10 ppt (parts per trillion) for combined levels of PFOA and PFOS in drinking water.

2. New York should conduct a statewide survey of drinking water sources to ascertain the degree to which public water supplies are contaminated, and the data should be made available to the public. First priority for testing should be public water supplies near former PFOA and PFOS manufacturing facilities, and near fire-fighting areas and airports where these chemicals were used. We understand that such a survey is contemplated and we urge speed and low-detection levels in its conduct. Additionally, the state should offer testing of drinking water from private wells in the vicinity where elevated PFOA and/or PFOS have been identified.

3. New York should carry out a more comprehensive health assessment of exposed residents in communities found to have elevated PFOA or PFOS concentrations in drinking water.

4. Women who are exposed to elevated PFOA in drinking water and are breastfeeding should be advised of the benefits and risks of breastmilk, and provided advice to discuss with their family doctor and pediatrician. The Drinking Water Quality Advisory Council may be in a position to assist in providing such guidance to physicians and families.
I. EXPOSURE TO PFOA

Almost all Americans tested have one or more PFCs in their bodies (Hu et al., 2016; Kato et al., 2011). Widespread use of PFCs has resulted in the ubiquitous presence of these chemicals in the environment including in rivers, soil, air, house dust, food and drinking water from surface and groundwater sources. We are all exposed to small amounts by inhaling house dust from prior uses for water-repellent textiles (for example from treatment on upholstery) and from ingesting small amounts in food and food packaging.

Drinking water becomes the dominant source of exposure to PFCs for people living in communities with drinking water contaminated with these chemicals, far exceeding low levels of exposure from other sources. Other sources of PFC exposure include food, food packaging, consumer products, house dust, indoor and outdoor air, and at workplaces where PFCs are made or used (NJDOH, May 2016; USEPA, 2016a). The national geometric mean for PFOA in drinking water is 4.13 ppt (CDC, 2015). A report by Hu et al., 2016, reported that about 4% of public water supplies in the U.S. (about 200 of 5,000 public water supplies studied), serving 16.5 million Americans in 33 states, 3 territories and an American Indian community, have measurable levels of PFCs.

According to the U.S. Environmental Protection Agency (USEPA), sixty-six public water supplies, serving six million Americans, had at least one sample above that agency’s 2016 PFOA health advisory of 70 ppt. PFOA was the most frequently detected PFC in drinking water, followed by PFOS. Drinking water from 13 public water supplies accounted for 75% of PFCs detected in the US. Exceedances of the USEPA’s health advisory have been detected in California, New Jersey, North Carolina, Alabama, Florida, Pennsylvania, Ohio, New York,
Georgia, Minnesota, Arizona, Massachusetts and Illinois (Hu et al., 2016). High levels of PFOA and other PFCs in drinking water were strongly associated with proximity to major PFOA industrial sites, civilian airports, and military fire training areas (Hu et al., 2016).

Even relatively low PFOA concentrations in drinking water are associated with substantial increases in blood serum levels. Since the clearance of PFOA is slow and it accumulates in blood, after a long period of exposure, a person’s blood serum PFOA level will be about 100 times greater than the PFOA concentration ingested via drinking water (Post et al., 2012).

Vesterfren and Cousins, 2009, evaluated the contribution of water, diet, air and other sources for various exposure scenarios. They found that when drinking water concentrations are in the typical background concentration of 1.3 ppt, dietary exposure is the dominant source of exposure. However, when drinking water concentrations are elevated (they use 40 ppt as an example), the ingestion of contaminated water becomes the predominant exposure. As contamination levels increase, drinking water becomes the overwhelming source of exposure. Drinking water concentrations of 100 ppt and 400 ppt are predicted to contribute 71% and 91%, respectively, of total exposure; and are estimated to increase serum levels, on average, by 250% and 1000%, respectively (Post et al., 2012).

Detection sensitivity of PFOA and PFOS varies, as it is dependent on the method of analysis used to quantify the results. In the United States, the method used to detect PFCs is generally less sensitive than the detection limit in the European Union. Because of this difference in analytical detection methodology, U.S. samples are not detected at very low levels. In U.S. samples, the quantified reporting limit is generally in the range of 4-5 ppt. Generally,
laboratories use USEPA Method 537 or a modified version, as described by Shoemaker et al., 2009. In Europe, the reporting limit is less than 0.85 ppt (Post et al., 2012). If the sample detection limit is lower, it is likely that more samples would be found to contain measurable amounts of PFOA and other PFCs. The relatively high minimum reporting limits in some surveys, some of which were more than 10 ppt (Hu et al., 2012), suggest that more samples would have been detected had the detection level been lower.

Methodology is available that can achieve detection levels of 1 ppt and less.

A. Presence of PFOA and PFOS in People

Persistent chemicals such as those in the PFC family are characterized by long periods during which the body retains these chemicals after exposure ceases (USEPA, 2016a and b). Both PFOA and PFOS are known to bioaccumulate in people of all ages, even before birth. USEPA estimates that the half-life of PFOA is 2.3 years. (The half-life is the time it takes to reduce the concentration by half.) For PFOS, the half-life is estimated to be more than 8 years.

Because the use PFOA and PFOS in manufacturing has been phased out in the United States, PFOA and PFOS levels in blood serum have decreased in recent years. But because PFOA and PFOS bioaccumulate and are not excreted by the body, and because PFOA and PFOS do not readily degrade and persist in water systems absent filtration, PFOA and PFOS will continue to be present in the general population as well as in exposed populations for many years in the future. The National Health and Nutrition Examination Survey (NHANES) have evaluated blood serum concentrations of PFOA and PFOS in a large representative sample of the U.S. populations age 12 and older. The PFOA geometric mean blood serum concentration for survey years 1999-2000 was 5,210 ppt, with a 95th percentile of 11,900 ppt. For survey years
2007-2008, the PFOA geometric mean was 4,130 ppt, with a 95th percentile level of 9,700 ppt (Kato et al., 2011).

B. Fetal and Infant Exposure

Almost all fetuses and infants will have some degree of exposure (Post et al., 2012; NJDOH, May 2016), including fetal exposure during pregnancy. For infants, PFOA exposure may be further elevated due to ingestion of contaminated breastmilk (a result of the mother’s ingestion of contaminated water, and other sources) or infant formula prepared with contaminated drinking water. The mother passes PFOA via her breastmilk, resulting in a reduction of PFOA in the mother and an increase in PFOA in her infant.

There are limited studies of the concentrations of PFOA and PFOS in breastmilk in the general population, finding a range for PFOA of 47 to 210 ppt, and a range of 45 to 360 ppt for PFOS (Man et al., 2006). The levels in breastmilk are much higher than what is typically found in drinking water (about 1 to 4 ppt), due to the mothers’ past accumulated exposures and transfer to breastmilk.

PFOA levels (and other PFCs) were measured in blood serum and in breastmilk in a residential population in Ohio exposed to PFOA in drinking water at elevated levels. A mean PFOA blood serum concentration of 28,000 ppt in maternal blood serum resulted in breastmilk PFOA levels of about 700 to 1,000 ppt (2.5% to 3.8% of blood serum level). The geometric mean blood serum concentration for breastfed children in this population was 32,000 ppt (Mondal et al., 2012), higher than the maternal blood serum concentration.
Breastmilk PFOA levels will be higher than drinking water PFOA concentrations ingested by the mother. This is because the PFOA maternal blood serum level is approximately 100 times greater than the drinking water she ingested over time, and 2.5% to 3.8% of the maternal blood serum PFOA concentration will be found in her breastmilk (Post et al., 2011). The State of Minnesota Department of Health estimated a breastmilk transfer factor of 5.2% (Minnesota DOH, 2017a). Therefore, breastmilk is estimated to contain about 2.5 to 5 times the concentration in drinking water. There are many variables regarding transfer of chemicals to breastmilk, and there is a paucity of data upon which to derive these estimates. More comprehensive testing of breastmilk PFOA concentrations, especially for women drinking PFOA contaminated drinking water, will help in determining the degree of exposure via breastmilk.

The degree to which fetuses and nursing infants are exposed via breastmilk is influenced by the mother’s past exposures and body burden, as measured by blood serum. Older mothers tend to have higher body burdens due to past cumulative exposures over time. First-born babies receive a higher dose via breastmilk than subsequent infants. (Papadopouou et al., 2016; Post et al., 2012; Wu et al., 2015.)

C. PFOA Contamination in Hoosick Falls and Other Locations in New York State

The Village of Hoosick Falls, New York has been identified as contaminated with PFOA after the New York State Department of Health (NYSDOH) detected the chemical in the public water system at levels ranging from 151 to 662 ppt. Private wells were found to have PFOA levels ranging from 14.4 to 194 ppt (NYSDOH, 2015).

Drinking water samples collected from October 2014 to February 2015 (number of samples, n = 26) from Hoosick Falls public water supply system before treatment ranged from
150 to 540 ppt with a geometric mean of 292 ppt. Additional samples collected from June 2015 to February 2016 (n = 178) found PFOA levels ranging from 2 ppt to 1010 ppt and a geometric mean of 235 ppt. NYSDOH reported an overall geometric mean of 316 ppt for Hoosick Falls drinking water samples (NYSDOH, 2016). Routine water treatment did not result in decreased concentrations; 5 samples analyzed post-treatment (‘finished water’) found a reported range of 440 to 530 ppt and a geometric mean of 483 ppt. (These samples were not matched pairs.)

These levels far exceed typical PFOA background concentrations in drinking water of about 1 to 5 ppt; with a geometric mean of 4.13 ppt (CDC, 2015).

Hoosick Falls residents’ geometric mean blood serum was reported by NYSDOH as 23,500 ppt – about 10 times higher than the U.S. population background for blood serum of 2,080 ppt. Studies have determined that in people long term ingestion of PFOA in drinking water will result in blood serum levels of PFOA about 100 times higher than the concentration in the water. To reach a mean blood serum PFOA concentration of 23,500 ppt, the mean PFOA drinking water concentration is estimated to be 235 ppt – similar to the geometric mean of 300 ppt in drinking water reported by NYSDOH for Hoosick Falls. This suggests that residents’ exposure via contaminated drinking water has been on-going because the bioaccumulation in blood serum is nearly 100 times higher than the concentration of PFOA in drinking water.

Other areas in New York State have also found PFOA at elevated concentrations. The City of Newburgh public water supply reported a range of 146 ppt to 155 ppt with a geometric mean PFOA of 150 ppt (n = 4) in March 2016. Subsequently, the water source was changed to a non-contaminated source. (http://www.cityofnewburgh-ny.gov/sites/newburghny/files/minutes/minutes-file/2016-05-09_council_minutes.pdf).
Newburgh residents are continuing to receive water from New York City’s municipal supply due to the continued risks from PFOA in Newburgh’s public water supply.

Well water sampling in Petersburgh by the Rensselaer County Department of Health identified many groundwater areas contaminated with PFOA; most were non-detect to 20 ppt, but some water samples exceeded 1,000 ppt (Rensselaer County DOH, 2016). In Suffolk County, the NYS Department of Environmental Conservation found groundwater wells in Westhampton to be contaminated with PFOS and PFOA, likely from firefighting foam used at the Air National Guard Base at the Gabreski Airport in Westhampton (Southampton Press, 2017).

II. HEALTH RISKS ASSOCIATED WITH EXPOSURE

Sufficient information exists to evaluate the adverse health effects and cancer risks of PFCs in humans and in animals. Both human studies and animal studies are used to evaluate adverse effects of chemical exposures. In the case of PFOA and PFOS, the animal and human studies show similar adverse effects and cancer risks, elucidated below. Due to structural similarity and the co-occurrence of PFOA and PFOS in the environment and in people, public health protection and guidance address both PFOA and PFOS.

Several recent comprehensive reviews of the scientific literature have been published (Dong et al., 2017; Post et al., 2012; Lilienthal et al., 2017; Winkens et al., 2017; Ballesteros et al. 2017; Chang et al., 2016; C8 Science Panel Report, 2017). In experimental animals, PFCs have been found to cause developmental, immune, neurobehavioral, liver, endocrine, and metabolic toxicity, generally at levels well above human exposures to the general population.
However, for people ingesting contaminated drinking water, PFOA concentrations may approach levels that increase risks for adverse effects. The most consistent human health findings for PFOA (the most well studied of the PFCs), are increases in serum cholesterol, liver enzymes, and uric acid levels in people exposed to elevated levels found in drinking water (see NJ Department of Health, May 2016).

Exposure to PFOA over certain levels may result in significant adverse health effects including developmental effects to fetuses during pregnancy, the neonatal period and puberty (low birthweight, skeletal variations, accelerated puberty, mammary gland development), cancer (testicular, kidney), liver effects (tissue damage), immune system effects (antibody production and immunity), thyroid effects and other effects (cholesterol changes). (USEPA, 2016c, Grandjean and Budtz-Jorgensen, 2013.) Effects on fetal development and the young have been studied in both humans and animals, which find similar and profound adverse effects, discussed below.

A. Risks Associated with Effects on Fetal Development and the Young

Since infants and children consume more water per body weight than adults, their exposures may be higher than adults in communities with PFCs in drinking water. Infants may also be exposed via contaminated breastmilk, and/or by infant formula prepared with PFOA contaminated water. In addition, the young also may be more sensitive to the effects of PFCs due to their immature developing immune system, and rapid body growth during development (Apelberg et al., 2007; Ballesteros et al., 2017; Johnson et al., 2014; Rappazzo et al., 2017). In people, exposure to PFCs before birth or in early childhood may result in decreased birthweight, decreased immune responses, and hormonal effects later in life.
Recent literature has identified developmental effects of significance. In particular, prenatal exposure of mice to PFOA found adverse effects on mammary gland development in offspring of treated females. These effects included delayed mammary gland development, fewer terminal end buds, and increased liver weights in the offspring (Macon et al., 2011). This study found that PFOA-induced effects on mammary tissue occur at lower doses than the effects on liver weight, and that adverse effects were observed at all dose levels. Due to the low-dose sensitivity of mammary glands to PFOA in mice, a no-observable adverse effect level for mammary gland developmental delays could not be determined. In other words, all dose levels found adverse effects.

A review of effects on children was published by Rappazzo et al., 2017. Sixty-four studies were evaluated for six categories of health outcome: immunity, infection, asthma, cardiometabolic, neurodevelopmental/attention, thyroid, renal, and puberty onset. They found evidence of delayed mammary gland development, later age at menarche (menstruation), effects on renal function, and asthma. Adverse effects of PFOA and PFOS on sperm quality in U.S. men (Louis et al., 2017), and endometriosis in U.S. women (Campbell et al., 2017) have been reported. Immunotoxicity was reported in a study of children based on serum concentrations and vaccine antibody responses (Grandjean and Budtz-Jorgensen, 2013).

The USEPA in its Fact Sheet on PFOA and PFOS Drinking Water Health Advisories (USEPA, November 2016c) notes that “exposure to PFOA and PFOS over certain levels may result in adverse effects, including developmental effects to fetuses during pregnancy or to breastfed infants”. These include low birth weight, accelerated puberty, skeletal variations, liver effects, immune effects, thyroid effects, cholesterol changes, and cancer (testicular and kidney).
B. Cancer Risks

PFOA and PFOS toxicological studies have found increases in tumors in rodents as well as in people. The USEPA Science Advisory Board, the International Agency for Research on Cancer, and the report of the C8 scientific advisory panel have identified PFOA and PFOS as likely carcinogens. Carcinogens are chemicals that cause cancer.

Evidence of carcinogenic effects of PFOA in humans is based on studies of kidney and testicular cancer in occupational settings where increased cancer incidence was found (USEPA, 2016a and b). In a New Jersey community significantly exposed to PFOA through drinking water (data not provided), PFOA was associated with higher incidence of kidney and testicular cancers. (NJDOH, 2016; Barry et al., 2013). Blood serum median concentrations of PFOA in this study population was 28,000 ppt, very similar to the residents of Hoosick Falls where blood serum median levels were 23,500 ppt.

Studies of people working with and exposed to PFOA (occupational exposure) have shown associations between PFOA and prostate cancer (Steenland et al., 2015), and bladder cancer (Raleigh et al., 2014). Occupational exposure in 3M and Dupont workers found serum geometric mean PFOA levels ranging from 410,000 to 1,125,000 ppt (NYSDOH, June 2017).

NYSDOH conducted an evaluation of cancer occurrence in the Hoosick Falls population. In that study, no relationship was found between PFOA exposure and testicular cancer, kidney cancer, prostate cancer and bladder cancer. While the investigators did not find evidence for increased cancer risk in this community, studies of community exposures have inherent limitations and are difficult to study in low number populations. As noted by NYSDOH, limitations of this study include small population, incomplete inclusion of the potentially
exposed populations and inclusion of only cancer as endpoints of adverse effects (NYSDOH, May 2017).

III. HEALTH ADVISORIES AND DERIVATION OF AN MCL FOR PFOA

A Maximum Contaminant Level (MCL) is the legal threshold of the amount of a chemical that is allowed in public water systems under the Safe Drinking Water Act. The MCL is an enforceable standard that requires steps to meet the standard for public health protection. An MCL is derived based on three steps: First, the most sensitive endpoint (i.e., the adverse health effect seen at the lowest level of exposure in scientific studies) is identified based on an assessment of the scientific data. Second, to protect the public from the risks associated with exposure, uncertainty factors are applied so people are not exposed to the levels at which adverse effects have been found in animal studies. Third, the MCL should take into account the ability to measure the chemical in water, and the technical feasibility of meeting the standard by using available treatment technology. Based on this assessment, we recommend that the New York State Drinking Water Quality Council set an MCL for the combined concentration of PFOA and PFOS at a level between 4 and 10 ppt.

A. Uncertainty Factors in Risk Assessment

The use of uncertainty factors has a long history in developing regulatory standards and guidance for chemicals. Uncertainty refers to our inability to know all the adverse effects related to a chemical, often due to incomplete data. When assessing the potential for risks to people, toxicology studies often involve exposing test animals (generally rats and mice) which are used
as a surrogate for humans (USEPA, 2017). A thorough review of the development and use of science-based uncertainty factors can be found in the USEPA document and NAS, 2013a and b.

Risk assessment for public health protection must account not only for what is known about a chemical’s adverse effects, but also what is not known about differences between toxic effects in animals compared to humans; children compared to adults; differences in absorption, metabolism and excretion; and other unknowns. The selection of uncertainty factors is designed to account for the incomplete understanding or availability of studies upon which toxicity is appraised.

An uncertainty factor (UF) of 10 is applied for human variation to account for variation in susceptibility across the human population and the possibility that the available data may not be representative of individuals who are most sensitive to the effect (referred to as “UF(H)”). This is a default assumption used in nearly all risk assessments.

An UF of 3 or 10 is applied to account for differences between humans and animals (referred to as “UF(A)”). In estimating an acceptable level of a chemical, scientists determine the appropriate uncertainty factors to apply to animal studies. The determination of whether to apply the full 10, or to apply the modified 3 (less protective) as the appropriate UF to account for animal-human differences is often the matter of much debate. These determinations are made using scientific scrutiny but invariably include subjective assessment of the animal and human studies, and the ‘weight-of-evidence’ of these studies taken as a whole.

An UF of 3 to 10 can be applied to account for adjustment of studies which have found adverse effects at the lowest dose tested as well as at higher doses (referred to as “UF(LOEL)”). In cases where effects were seen at even the lowest level of exposure, this factor is used to adjust
for the uncertainty of whether these effects would have been observed at lower levels of test
dosing (‘Low Observed Effect Level’ modified to a ‘No Observed Effect Level’). An UF of 10
can be applied to account for studies which have a short duration of exposure rather than chronic
exposure (referred to as “UF(SC)”). This is used, for example, when test dosing may only be
several weeks or months (subchronic) rather than for the full lifetime where other chronic effects
may have been found if the study duration were longer.

An UF of 10 can also be applied to account for more sensitive effects that are not
otherwise considered (referred to as “UF(Data)”). This can be used to account for a database
that does not adequately address organ systems or lifestage at doses that are lower than those that
increase risks of other effects, such as liver damage.

The total uncertainty factor combines the UFs that have been applied.

B. Existing Advisories and Regulatory Standards

Current state and federal health advisories and MCLs for PFOA are stringent - with a
range from 14 to 70 ppt. For comparison, other chemicals for which there are MCLs regulated
by USEPA, such as PCBs, benzene, and mercury, have MCLs which allow substantially more of
these chemicals to be present in drinking water because the adverse effects occur at higher levels
than for PFOA and PFOS. The MCL for PCBs is 0.0005 parts per million (ppm), equivalent to
500 ppt. The MCL for benzene is 0.005 ppm, equivalent to 5,000 ppt. The MCL for inorganic
mercury is 0.002 ppm, equivalent to 2,000 ppt. See National Primary Drinking Water
Regulations (USEPA, 2009). This means that the levels of PFOA and PFOS that are considered
of public health concern (advisory levels are currently 14 to 70 ppt) are lower than those of most
other environmental contaminants, indicating a higher degree of risk.
Although the health advisory concentrations for PFOA vary, the advisories cluster at low ppt levels. The advisories are based on developmental effects and cancer risks, and health authorities uniformly acknowledge the serious concerns related to exposure for the general population consuming PFOA contaminated drinking water. The selection of uncertainty factors is a primary determinant for the variation in the concentrations developed as advisories. None of the federal and state assessments dispute the very serious effects associated with exposure to PFOA and PFOS at very low levels of exposure.
These advisories are summarized in the table below:

<table>
<thead>
<tr>
<th>Author</th>
<th>Advisory, ppt</th>
<th>Study Endpoint</th>
<th>UF Human</th>
<th>UF Animal</th>
<th>UF LOEL</th>
<th>UF Data</th>
<th>TOTAL UFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA</td>
<td>70</td>
<td>Developmental effects on bone growth and male puberty</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>not applied</td>
<td>300</td>
</tr>
<tr>
<td>New Jersey</td>
<td>14</td>
<td>Mammary gland effects, increased liver weights</td>
<td>10</td>
<td>3</td>
<td>not applied</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Minnesota</td>
<td>35</td>
<td>Developmental effects on bone growth and male puberty, increased liver weights</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Vermont</td>
<td>20</td>
<td>Developmental effects on bone growth and male puberty</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>not applied</td>
<td>300</td>
</tr>
<tr>
<td>NRDC</td>
<td>4 to 10</td>
<td>Mammary gland effects and developmental effects</td>
<td>10</td>
<td>10</td>
<td>not applied</td>
<td>10</td>
<td>1,000</td>
</tr>
</tbody>
</table>

ppt = parts per trillion
UF (Human) to account for variation within the human population
UF (Animal) to account for differences between animals and humans
UF (LOEL) to account for studies where a no effect level was not identified
UF (Data) to account for missing or incomplete data
a. USEPA Health Advisory

USEPA has issued drinking water health advisories for PFOA and PFOS of 70 ppt (USEPA, May 2016a and b). In the case of co-occurrence of PFOA and PFOS, the sum of the concentrations is not to exceed 70 ppt. As opposed to MCLs, health advisories are non-enforceable.

The USEPA health advisories were derived from developmental toxicity studies in rodents. USEPA applied combined uncertainty factors of 300 on a low-observed-effect-level (LOEL) of decreased bone development in the fore and hind limbs, in pup mice (both sexes) and accelerated puberty in male mice. These are significant developmental effects.

b. Standards and Advisories Adopted in Other States

The Vermont Department of Health published a health advisory based on developmental effects for combined exposure to PFOA and PFOS not to exceed 20 ppt (Vermont Department of Health, 2016). They applied combined uncertainty factors of 300 using USEPA’s rationale although they did not explicitly provide an explanation of which uncertainty factors were used to account for which uncertainties.

In New Jersey, the New Jersey Drinking Water Quality Institute (New Jersey Drinking Water Quality Institute, March 2017) derived a recommended MCL in water for PFOA of 14 ppt based on increased liver weight in rodent studies. Previously, the State of New Jersey in 2007 derived an MCL of 40 ppt, which was revised in 2016 to a more stringent level of 14 ppt based on chronic exposure from drinking water for cancer and non-cancer endpoints. Non-cancer endpoints were derived based on delayed mammary gland development as the most sensitive
endpoint, and applied uncertainty factors of 300 (10 for intra-human variability, 3 for animal to human toxicodynamic differences, and 10 to protect more sensitive toxicological effects). The MCL for cancer endpoints was derived from testicular tumor data from chronic dietary exposure in rats. Both cancer and non-cancer endpoints resulted in a MCL of 14 ppt (NJDOH, 2016; see also New Jersey Drinking Water Quality Institute, February 2017 for comprehensive assessment).

The State of Minnesota derived drinking water guidance values of 35 ppt for PFOA, and 27 ppt for PFOS, were developed in 2009, and confirmed in 2017 (Minnesota Department of Health, 2017a). They applied combined uncertainty factors of 300 including: UF of 10 for intraspecies variability, UF of 3 for interspecies differences, UF of 3 for adjustment of a low-effect-level, along with a database uncertainty factor of 3 for the lack of an acceptable 2-generation study. The derivation also included an exposure estimate to account for infant exposure via PFOA in breastmilk, assuming one year of breastfeeding.

Clearly, there are differences in the use and application of uncertainty factors by various agencies and scientific assessments. For example, when considering the developmental effects of PFOA, there was no level at which there were no effects (i.e., all dosing levels showed adverse effects on bone development and accelerated puberty in males). To account for the lack of a no effect level, an uncertainty factor of 10 (UF (LOEL)) was applied by USEPA and the state of Vermont, but the state of Minnesota adjusted this uncertainty factor to a less protective 3.

Additionally, New Jersey and Minnesota applied an uncertainty factor due to the lack of an adequate database to assess possible effects not studied robustly. USEPA and the state of Vermont did not apply this uncertainty factor UF (data), whereas the state of Minnesota applied
an uncertainty factor of 3 for incomplete understanding of changes in bone development and puberty, which are poorly understood.

c. New York State Advisories

New York State has not to date developed a specific MCL for PFOA or PFOS, and over the past few years, has relied on a number of different advisory levels for PFOA and PFOS in drinking water. In a Fact Sheet released in 2015, NYSDOH presented the MCL for combined PFOA and PFOS not to exceed 50,000 ppt, based on classification of these chemicals as ‘unspecified organic contaminants’ under state regulations (NYSDOH, 2015). NYSDOH later relied on the USEPA provisional health advisory level for PFOA of 400 ppt. USEPA revised this advisory to 70 ppt in 2016, which NYSDOH then used as an advisory. A water sample in excess of a health advisory indicates a potential threat to public health and initiates actions to reduce exposure and identify the sources of contamination, but does not carry the legal authority of an MCL.

C. Proposed MCL for PFOA and PFOS

New York State should adopt a Maximum Contaminant Level in the range of 4 to 10 ppt for PFOA and PFOS combined for the protection of the public based on available human and animal data. The scientific weight of evidence demonstrating adverse effects at very low levels of exposure is more than adequate to develop this MCL range. Due to increased cancer risk (testicular cancer and kidney cancer), and known serious adverse effects of exposure to PFOA and related chemicals (most sensitive health endpoints are delayed mammary gland development, and delayed bone formation), we propose a drinking water MCL in the range of 4 to 10 ppt for combined exposure to PFOA and PFOS, with a detection testing limit of 1 ppt. As
previously discussed, a detection sensitivity of 1 ppt is achievable, and should be required for testing drinking water. The most sensitive detection methods should be employed so that the lower levels of PFOA in water can be determined. Further, the removal of PFOA has been demonstrated to be effective with granular activated carbon (GAC), showing that the MCL meets technological feasibility.

When comparing derivations of other chemicals of concern, it is clear that PFOA exposure poses a high risk to fetuses, infants, children and pregnant women, as well as the general population. There is particular risk for sensitive members of the population from chemicals of such persistence and clear adverse effects at very low levels of exposure, especially when large data gaps are present.

Delayed mammary gland development is the most sensitive endpoint for PFOA exposure (Macon et al., 2011) and should be used to derive a reference dose for the MCL, to protect infants and children at low doses. This study also identified increased liver weights at about the same level of dosing. The USEPA excluded the results of the mammary gland findings based on their view that the study could not be interpreted, that a susceptible strain of mice was used in the study, and that mammary gland effects had not been previously used for risk assessment. Health advisories of Vermont, New Jersey and Minnesota derived their assessments based on developmental effects (bone growth and male puberty) as the most sensitive adverse effect for PFOA and have used this as the basis of their risk assessments. We believe that these developmental studies showing effects on the mammary gland, male puberty and bone growth in conjunction with other studies in people showing effects such as prostate and testicular cancer, may be hormonally-activated and cannot be dismissed. Grandjean and Budtz-Jorgensen (2013) point out that for PFOA, interference with mammary gland development in mice seems to occur
at lower exposures than liver toxicity, and drinking water advisories based on liver toxicity and may not be as protective as intended, despite the use of uncertainty factors. They conclude that advisories PFOA and other PFCs calculated on the basis of liver toxicity are too permissive and must be decreased substantially to be protective of public health.

An uncertainty factor of 1,000 should be applied to be protective of public health when deriving the MCL for PFOA and PFOS. USEPA and states with an MCL or advisory have inconsistently used a combined uncertainty factor of 300, but for different reasoning. Expert health authorities do not agree on the application of UFs for PFOA. It is clear that the true relationship of exposure to PFOA and effects on the young are largely as yet unknown or poorly characterized. For this reason, careful consideration of uncertainty is critical.

An UF of 10 should be applied to account for variability within people (UF(H)), particularly when accounting for differences in vulnerability based on age. Children’s vulnerability to toxic chemicals has received attention because children are far more sensitive than adults to toxic chemicals in the environment. Rather than assessing risk based on the “average adult”, they stress the need for evaluating the unique risks of infants, children, and fetuses and other vulnerable groups within the population (Landrigan and Goldman, 2011). There are fundamental and important differences between adults and children. Children have greater exposures to toxic chemicals for their body weight than adults. Their metabolic pathways are immature, and a child’s ability to metabolize toxic chemicals is different than adults. In addition, children’s early developmental processes are easily disrupted, and can affect multiple systems such as brain, reproductive organs, and hormonal development. Research in pediatrics and developmental toxicology has suggested that “windows of vulnerability” are critical periods in early development when exposures that have no adverse effects on adults can
disrupt organ development and cause lifelong functional impairments (Landrigan and Goldman, 2011).

An UF of 10, not the less protective 3, should be applied to provide an adequate margin of safety when extrapolating animal data to humans (UF(A)). There are substantial differences between humans and animals with regard to absorption and retention of PFOA and PFOS. (Post et al., 2017). Blood serum levels in people are much higher, and the half-lives are much longer, than in animals exposed to the same amount (Post et al., 2017). As the Centers for Disease Control’s Agency for Toxic Substances and Disease Registry (ATSDR) in their video “PFOA Information for Clinicians,” (available on YouTube and the transcript of the November 29, 2017 DWQC meeting, where it was shown) points out that “without a better mechanistic understanding of both the toxicokinetics and toxicodynamics, it is difficult to relate the outcomes in animals to human health effects.” In the case of PFOA and PFOS, this introduces uncertainties in data evaluation, which requires an uncertainty factor of 10 rather than 3 be used to account for this unknown.

In addition to variability between animals and people and between people, there is additional uncertainty due to an incomplete database of toxicity studies (UF(Data)). As such, an uncertainty factor of 10 should be applied to account for the fact that the toxicity database is incomplete and that there is no full assessment of potential harm that could be at lower levels. Post et al., 2017 note that an uncertainty factor should be used when “there is concern that future studies may identify a more sensitive effect, target organ, population, or lifestage.” The finding of mammary gland effects at the lowest level of exposure tested is another source of uncertainty and supports the use of the full 10-fold factor. (See Macon et al., 2011).
Among the uncertainties are the relationships between hormonal variation, sperm quality, and testicular cancer in men; the relationship between blood serum levels, breastmilk concentrations, infant and child serum levels, and effects later in life such as endometriosis in women; and many other chronic conditions not yet evaluated. Further, the effects of the combined exposure to PFOA and PFOS are poorly understood. Immunotoxic effects have been identified, but have not been used in risk assessment for development of an MCL. Grandjean and Budtz-Jorgensen (2013) posit that their study shows effects at even lower levels of exposure, suggesting an acceptable level of 1 ppt in drinking water. Noting these same gaps in the database, New Jersey also applied a UF(data) of 10.

D. Summary

The weight of evidence and uncertainties especially with regard to effects on developing organisms including children indicate that a combined uncertainty factor of 1,000 should be applied (UF(H) of 10; UF(A) of 10; and UF(data) of 10)(Bhat et al., 2017; Dong et al., 2017; Post et al., 2017; Grandjean and Budtz-Jorgensen, 2013; USEPA, 2014).

Using the same database as USEPA and the states have reviewed, using mammary gland and developmental effects as the most sensitive endpoints, and applying the appropriate combined uncertainty factor of 1,000 rather than 300, an MCL range of 4 to 10 ppt is derived. This range of MCLs is at the limit of detection for PFOA and PFOS, and within the capability of Granular Activated Carbon (GAC) to remove PFOA and PFOS. Analytical testing should be conducted at levels as close to 1 ppt as possible.

Therefore, to be protective of human health including fetal and childhood exposures, a combined uncertainty factor of 1,000 should be applied. We urge the New York State
Department of Health (NYSDOH) and the Drinking Water Quality Council (DWQC) to rigorously study the choices of uncertainty factors and apply them with the utmost care to protect the citizens of New York.

IV. RECOMMENDATIONS

A. New York State Should Adopt an MCL for PFOA and PFOS in the range of 4 ppt to 10 ppt

For the reasons stated earlier, New York State should adopt an MCL in the range of 4 ppt to 10 ppt for PFOA and PFOS combined exposure for the protection of public health based on known serious adverse health effects and increased cancer risks. PFOA and PFOS have been found in public drinking water supplies as well as in private water supplies at elevated levels across New York State. There is overwhelming evidence of adverse effects of exposure which is not in dispute. The MCL should be periodically revisited to determine whether newer studies suggest the MCL to become more stringent.

B. New York State Should Conduct a Statewide Comprehensive Survey of Drinking Water for PFOA

A statewide survey of drinking water sources should be conducted by NYSDOH to ascertain the degree to which potable water supplies are affected. The analyses should be conducted using the most sensitive detection methods for a comprehensive assessment. First priority for testing should be public water supplies where sources of water (ground and/or surface) are near former PFOA manufacturing or processing facilities; near fire-fighting areas where PFOA were used; and near airports which may have used PFOA. Drinking water supplies near landfills should also be given priority. We understand that such a survey is contemplated
and we urge speed and low-detection levels in its conduct. In areas where public water supplies have been found to have elevated PFOA and/or PFOS, the state should offer testing of private drinking water wells in the vicinity.

Data on PFOA and other PFCs in water supplies already tested by the NYSDOH and other entities should be provided for evaluation by scientists and the public. Where available, blood serum levels of PFOA and related chemicals that have been analyzed should be provided as matched pairs with water samples, where available, without individual identification so that confidentiality will be protected.

C. New York State Should Conduct a Comprehensive Health Survey for Communities with PFOA Contamination

The New York State Department of Health should conduct a more comprehensive health assessment of exposed residents in Hoosick Falls and other communities found to have elevated drinking water PFOA concentrations. These studies should consider health endpoints in addition to cancer, such as effects on children’s health, pregnancy and birth outcomes, and other effects not evaluated. If other communities are found to have contaminated water supplies after the statewide drinking water survey is conducted, studies should be conducted for these populations as well.

D. New York State Should Create an Advisory Board to Consider Breastmilk and Infant Formula to Develop Recommendations to Mothers and Pediatricians

Given the evidence that PFOA and related chemicals are expected to be present in breastmilk of mothers exposed to PFOA contaminated drinking water, it is likely that there will be questions about whether it is advisable to provide breastmilk or infant formula to babies. The presence of PFOA in infant formula is of concern if it is prepared using PFOA contaminated
water. However, that can be avoided, whereas breastmilk contamination will almost certainly be present due to the mother’s’ past cumulative exposures. These are important personal decisions best made between the mother and the child’s pediatrician. It would be helpful for the Drinking Water Quality Council to form an Advisory Board to consider options and to advise mothers and doctors so informed decisions can be made.

Breastmilk analysis should be offered to women who are nursing their infants if they are in an area known to have PFOA contamination in drinking water.
UNITS AND DEFINITIONS

ppb = parts per billion = nanogram per milliliter (ng/ml) (usually used to express blood serum concentration)

ppt = parts per trillion = nanograms per liter (ng/L) (usually used to express water concentration)

ng/ml = 1,000 ppt

1 ppb = 1,000 ppt

UF = Uncertainty Factor
REFERENCES

Hu et al. 2016. Detection of PFASs in U.S. drinking water linked to industrial sites, military fire training areas, and waste water treatment plants. Env. Sci. and Tech. Letters, 2016; DOI: 10.1021/acs.estlett.6b00260.

Minnesota Department of Health. 2017 a. Perfluorochemicals (PFCs) and Health. May 2017, online website.

National Academy of Sciences (NAS). 2013 a. Risk Assessment and Uncertainty, Chapter 2;

New York State Department of Health. 2015. PFOA in drinking water, Hoosick Falls NY. Short Fact Sheet. on-line NYSDOH website.

Dr. Schreiber earned a Bachelor of Science degree in Chemistry from the State University of New York at Albany (1972), as well as a Master of Science degree in Chemistry (1978), and a Doctoral degree in Environmental Health and Toxicology from the School of Public Health of the State University of New York at Albany (1992).

Her career has been dedicated to assessing public health impacts of human exposure to environmental, chemical and biological substances. She was employed by the New York State Department of Health for over 20 years in varying capacities conducting investigations and risk assessments. She joined the New York State Office of the Attorney General in 2000, where she evaluated environmental and public health risks of importance to the State of NY. Dr. Schreiber retired from public service in 2012.