ASIAN PACIFIC ENVIRONMENTAL NETWORK • BIOFUELWATCH • CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE • CENTER FOR BIOLOGICAL DIVERSITY • CITIZEN AIR MONITORING NETWORK • COMMUNITIES FOR A BETTER ENVIRONMENT • COMMUNITY ENERGY RESOURCE • EXTINCTION REBELLION SAN FRANCISCO BAY AREA • FOSSIL FREE CALIFORNIA • FRIENDS OF THE EARTH • INTERFAITH CLIMATE ACTION NETWORK OF CONTRA COSTA COUNTY • NATURAL RESOURCES DEFENSE COUNCIL • RAINFOREST ACTION NETWORK • RICHMOND PROGRESSIVE ALLIANCE • RODEO CITIZENS ASSOCIATION • SAN FRANCISCO BAYKEEPER • STAND.EARTH • SUNFLOWER ALLIANCE • THE CLIMATE CENTER • 350 CONTRA COSTA

December 17, 2021

Via electronic mail (gary.kupp@dcd.cccounty.us)¹

Gary Kupp Senior Planner Contra Costa County Department of Conservation and Development 30 Muir Rd Martinez, CA 94553

Re: Phillips 66 Rodeo Renewed Project (File No. LP20–2040) – comments concerning draft environmental impact report

Dear Mr. Kupp:

Asian Pacific Environmental Network, Biofuelwatch, California Environmental Justice Alliance, Center for Biological Diversity, Citizen Air Monitoring Network, Communities for a Better Environment, Community Energy reSource, Extinction Rebellion San Francisco Bay Area, Fossil Free California, Friends of the Earth, Interfaith Climate Action Network of Contra Costa County, Natural Resources Defense Council, Rainforest Action Network, Richmond Progressive Alliance, Rodeo Citizens Association, San Francisco Baykeeper, Stand.Earth, Sunflower Alliance, and The Climate Center, 350 Contra Costa (collectively, Commenters) appreciate this opportunity to submit comments concerning the Contra Costa County's Draft Environmental Impact Report (DEIR) for the proposed Phillips 66 refinery (Refinery) Rodeo Renewed project (Project).

For reasons explained in these comments, the DEIR falls far short of the basic requirements of the California Environmental Quality Act (CEQA), Pub. Resources Code §

¹ The sources cited in this Comment are being sent separately via overnight mail to the County on a thumb drive.

21000 et seq. An EIR is "the heart of CEQA."² "The purpose of an environmental impact report is to provide public agencies and the public in general with detailed information about the effect which a proposed project is likely to have on the environment; to list ways in which the significant effects of such a project might be minimized; and to indicate alternatives to such a project." Pub. Res. Code § 21061. The EIR "is an environmental 'alarm bell' whose purpose it is to alert the public and its responsible officials to environmental changes before they have reached ecological points of no return. The EIR is also intended 'to demonstrate to an apprehensive citizenry that the agency has, in fact, analyzed and considered the ecological implications of its action.'" Laurel Heights Improvement Assn. v. Regents of University of California (1988) 47 Cal. 3d 376, 392 ("Laurel Heights I"). A project's effects include all indirect impacts that are "reasonably foreseeable." CEQA Guidelines, § 15064, subd. (d). An indirect environmental impact is "reasonably foreseeable" when "the [proposed] activity is capable, at least in theory, of causing" a physical change in the environment. Union of Medical Marijuana Patients, Inc. v. City of San Diego (2019) 7 Cal.5th 1171, 1197. Courts have analyzed whether it is "reasonably foreseeable" that a project will cause indirect physical changes to the environment in a variety of factual contexts, including changes to off-site land use, lifecycle impacts, and displaced development impacts. County Sanitation Dist. No. 2 v. County of Kern (2005) 127 Cal.App.4th 1544. See Save the Plastic Bag Coalition v. City of Manhattan Beach (2011) 52 Cal.4th 155, 174; Muzzy Ranch Co. v. Solano County Airport Land Use Com. (2007) 41 Cal.4th 372, 382-383. As explained below, the DEIR fails adequately to describe the Project's significant effects, let alone mitigate them.

The DEIR fails to meet these legal standards. The proposed Project would, if built, be the largest biofuel refinery in the world.³ A conversion of an existing refinery of this size is unprecedented and untested in California, implicating unknown impacts on operational safety, the agricultural land use systems supplying the feedstock, air emissions, and California's climate goals in the transportation sector, among other things. The law requires more than the limited and uninformative document the County has produced. And the community in and around Rodeo who will have to live with the Project, and everyone else potentially affected by it, deserve better.

Its key deficiencies, described in the sections below, include the following:

- *Incorrect baseline*. The assessment of impacts in the DEIR, and its definition of the no project alternative is grounded in an assumption that in the absence of the proposed conversions, the Refinery would continue processing crude oil at historic levels. This assumption is unsupported and contrary to fact. Available information makes clear that closure of the Santa Maria refinery, the source of petroleum feedstock for the Rodeo refinery, is inevitable with or without the Project.
- *Faulty project description*. The DEIR fails to disclose essential information regarding the proposed biofuel processing operations. This includes key information about feedstocks, as well as about the proposed refining process such as processing

² Laurel Heights Improvement Assn. v. Regents of University of California (1988) 47 Cal. 3d 376, 392 ("Laurel Heights I").

³ "Phillips 66 Plans World's Largest Renewable Fuels Project," Phillips 66 Corporate Website, *available at* <u>https://www.phillips66.com/newsroom/rodeo-renewed</u>.

chemistry, hydrogen production and input requirements (a major emissions generator) and refining temperature and pressure (which implicates process upset risks),– that are essential to an assessment of the proposed new operations on the surrounding community. It also fails to disclose actions connected to the Project that should have been considered together with it.

- *Failure to consider safety impacts.* The County ignored available information indicating a possible heightened threat of process upsets associated with processing of biofuel feedstocks, creating greater risk for workers and the community.
- *Failure to fully evaluate air quality impacts.* The DEIR, having failed to describe the new proposed process chemistry, fails as well to describe the air emissions impact of that process chemistry on air quality. In particular, the County ignored available information that the new feedstocks risk an increase in flaring and accidental releases; and failed to evaluate the differing air emissions impacts of various proposed feedstocks and product slates. The County also failed to assess the acute short-term hazards from flaring, confining itself to addressing longer-term pollution.
- *Failure to fully evaluate marine impacts.* The DEIR fails to adequately address the contemplated drastic increase in the amount of feedstock crossing through the marine terminal, including the risk of spills involving Project feedstocks for which impact and cleanup methods are poorly understood; as well as the impact of that increase on air quality, recreation, aesthetics, wildlife, and other public resources.
- *Failure to consider the environmental impacts of land use changes.* The Project will require importation of an unprecedented volume of food crop feedstocks such as soy oil. Yet the DEIR entirely neglects to consider the environmental impact of this massive diversion of food crop oils on land use including conversion of forest land to cropland, and incentivizing increases in palm oil production.
- *Inadequate analysis of climate impacts*. The DEIR failed to consider the indirect impacts of the proposed Project on California's climate goals. Full analysis of climate impacts must consider not just emissions from Project operations, but also the impact of a large influx of combustion fuel on climate goals for the transportation sector.
- *Inadequate discussion of hazardous contamination*. The Project will have a limited lifetime given that California's climate commitments lead away from combustion fuel. Accordingly, the DEIR should have considered the environmental impacts associated with decommissioning the Refinery site, which is almost certainly heavily contaminated with toxics. Additionally, the DEIR inadequately evaluated the impact of Project construction and operation on ongoing efforts to remediate and monitor hazardous waste contamination.
- *Deficient cumulative impacts analysis.* Remarkably, even though the DEIR was issued simultaneously with the DEIR for the very similar biofuel conversion project at the Marathon Martinez refinery, the DEIR makes no effort at all to evaluate the cumulative impact of those two projects together not to mention other biofuel conversion projects on key issues such as land use impact and regional air quality.
- *Deficient 'no project' alternative analysis.* Without the proposed Project, the Refinery would not continue processing crude at historic levels. Accordingly, the DEIR should have considered the environmental impacts associated with subsequent legal requirements for site decommissioning.

• Deficient project alternatives analysis. The DEIR improperly fails to consider an electrolytic "green" hydrogen alternative, even though it considered such an alternative for the very similar Marathon Martinez conversion project. Additionally, it improperly considers the various alternatives for reducing the Project's impact separately rather than together. The option of reducing the scope of the Project can and should have been considered together with the option of not expanding crude throughput over the wharf. The DEIR also defines the Project objectives so narrowly as to distort the consideration of alternatives.

The County had abundant information concerning all of these subjects at its fingertips that would have facilitated the type of robust analysis required for this Project, but chose to ignore it in the DEIRs. Commenters requested in their January 26, 2021 CEQA scoping comments on the Notice of Preparation (Scoping Comments) that these topics be considered, and provided voluminous documentation concerning each.⁴ The County chose to ignore it all in drafting the DEIR, resulting in a woefully deficient document.

The deficiencies we have identified are too pervasive and deep to be corrected merely by making changes in a final EIR. In order to ensure that the public has full information and opportunity to comment upon, the County must re-circulate a revised DEIR providing fully-documented analysis of all of the issues addressed in this comment (as well as the Scoping Comments). It is unavoidable that addressing the deficiencies identified in these comments in a manner that complies with CEA will necessarily require addition of "significant new information." CEQA Guidelines § 15088.5.⁵

This Comment document includes and incorporates the previously-submitted Scoping Comments as well as the expert report of Greg Karras accompanying this document as an appendix. All sources cited in this document have are being provided electronically to the County under separate cover.

⁴ Biofuelwatch, Community Energy reSource, Interfaith Climate Action Network of Contra Costa County, Natural Resources Defense Council, Rodeo Citizens Association, San Francisco Baykeeper, Sierra Club, Stand.Earth, Sunflower Alliance, and 350 Contra Costa, Phillips 66 Rodeo Renewed Project – comments concerning scoping: File LP20–2040 (Jan. 27, 2021), available at Contra Costa County Department of Conservation & Development Community Development Division. Appendix A: Notice of Preparation and Public Comments, <u>https://www.contracosta.ca.gov/DocumentCenter/View/72907/Appendix-A--NOP-and-Public-Comments-PDF</u> (accessed Dec. 10, 2021).

⁵ The regulations implementing CEQA, 14 CCR 15000 et seq., are cited herein as the CEQA Guidelines.

TABLE OF CONTENTS

I.		ST	ATEMENTS OF INTEREST1			
II.		THE PROJECT DESCRIPTION IN THE DEIR IS LEGALLY INADEQUATE				
	A.	. The Project Description Failed to Disclose All Project Components4				
		1.	The DEIR Failed to Disclose Two Project Components Undertaken Separately From the Project Permitting Process			
			<i>a.</i> The Unpermitted Conversion of Unit 250			
			b. NUSTAR Shore Terminals			
			c. Terminal and Wharf Improvement Project at the Port of Los Angeles			
	B.		e Project Description Failed to Describe Aspects of the Proposed Refining ocess Essential to Analyzing Project Impacts8			
		1.	The DEIR Fails to Disclose Information Regarding the HEFA Biofuel Refining Process Essential to Evaluating its Impacts			
			a. HEFA as the Proposed Type of Processing			
			b. Capabilities and Limitations of HEFA9			
			c. HEFA process chemistry10			
			<i>d.</i> Differing hydrogen demand associated with different feedstocks and product slates			
			e. Process chemistry of proposed hydrogen production10			
			f. Differences between HEFA and petroleum refining that increase risk of process upset, process safety hazard, and flaring incidents			
			g. Process upset, process safety hazard, and flaring incident records at the Refinery			
		2.	The DEIR Fails to Disclose Adequate Information Concerning HEFA Feedstocks			

	3. <u>The DEIR Fails to Disclose a Project Component Designed to Debottleneck</u> <u>Hydrogen-limited Onsite Refining Capacity</u>	12		
C.	The Project Description Failed to Disclose the Operational Duration of the Project Essential to Describing Impacts that Worsen Over Time			
III.	THE DEIR IDENTIFIES AN IMPROPER BASELINE FOR THE PROJECT	.14		
A.	CEQA Requires Use of an Accurate Baseline	.14		
B.	Available Evidence Makes Clear that Phillips 66 is Winding Down Operations at the Refinery Regardless of Whether the Project Moves Forward			
	1. <u>Inherent Infrastructure Constraints Limit Crude Feedstock Availability to the SF</u> <u>Complex</u>	.16		
	2. <u>The Permitting History of the Refinery Evidences Declining Crude Feedstock</u> <u>Availability</u>	. 19		
	3. <u>Available Crude Supply Data Demonstrate Declining Feedstock Availability at the Santa Maria Facility</u> .	_		
	4. Production Declines in the SF Complex Reflect Larger National Trends	.23		
	5. Conclusion Regarding the DEIR Baseline Analysis	24		
IV.	THE DEIR FAILED TO CONSIDER THE UPSTREAM ENVIRONMENTAL IMPACTS OF FEEDSTOCKS	24		
А.	A. Previous LCFS Program-Level CEQA Analysis Does Not Exempt the County Analyzing Impacts Analysis of Project-Induced Land Use Changes and Mitig Them			
B.	The DEIR Should Have Specified That the Project Will Rely Largely on Non-Waste Food System Oils, Primarily Soybean Oil			
C.	The Project's Use of Feedstocks From Purpose-Grown Crops For Biofuel Production Is Linked to Upstream Land Use Conversion			
D.	The Scale of This Project Would Lead to Significant Domestic and Global Land Conversions			
E.	Land Use Conversions Caused By the Project Will Have Significant Non-Climate Environmental Impacts			

F.	Land Use Conversions Caused by the Project Will Have Significant Climate Impacts
G.	The County Should Have Taken Steps to Mitigate ILUC Associated with the Project by Capping Feedstock Use
V.	THE DEIR FAILS TO ASSESS AND MITIGATE PROCESS SAFETY RISKS ASSOCIATED WITH RUNNING BIOFUEL FEEDSTOCKS
A.	The Project Could Worsen Process Hazards Related to Exothermic Hydrogen Reactions
B.	The Project could Worsen Process Hazards Related to Damage Mechanisms Such as Corrosion, Gumming, and Fouling
C.	Significant Hazard Impacts Appear Likely Based on Both Site-Specific and Global Evidence
D.	Process Operation Mitigation Measures Can Reduce but Not Eliminate Process Safety Hazard Impacts
E.	The DEIR Should Have Evaluated the Potential for Deferred Mitigation of Process Hazards
VI.	THE DEIR INADEQUATELY DISCLOSES AND ADDRESSES PROJECT GREENHOUSE GAS AND CLIMATE IMPACTS
А.	The DEIR Air Impacts Analysis Fails to Take Into Account Varying GHG Emissions from Different Feedstocks and Crude Slates
	1. <u>Processing Biofuel Feedstock Instead of Crude Oil Can Increase Carbon Emission</u> <u>Intensity of the Refining Process</u>
	2. <u>GHG Emissions Impacts Vary With Different Potential Feedstocks</u>
B.	The DEIR Failed to Consider the Impact of Biofuel Oversupply on Climate Goals47
C.	The DEIR Failed to Consider a Significant Potential GHG Emission Shifting Impact Likely to Result from the Project
	 <u>The DEIR Fails to Disclose or Evaluate Available Data Which Contradict Its</u> <u>Conclusion That the Project Would Result in a Net Decrease in GHG</u> <u>Emissions</u>

	2.	The DEIR Fails to Consider Exports in Evaluating the Project's Climate	50
		Impact	53
	3.		
		Cause and Contribute to Significant Emission-Shifting Impacts	55
VII.		HE DEIR FAILS TO ADEQUATELY DISCLOSE AND ANALYZE THE ROJECT'S AIR QUALITY IMPACTS	56
A.		ne DEIR Air Impacts Analysis Fails to Take Into Account Varying Air Emission Different Feedstocks and Crude Slates	
B.		ne DEIR Fails to Assess the Likelihood of Increased Air Pollution Associated e Increased Likelihood of Process Upsets	
	1.	The DEIR Did Not Describe the Air Quality Impacts of Flaring	58
	2.	The DEIR Failed to Describe the Impact of Feedstock Switching on Flaring	59
	3.	The DEIR Failed to Evaluate the Likelihood of Increased Flaring	59
C.	Th	ne DEIR Fails to Address Acute Episodic Air Pollution Exposures	60
D.	Th	e DEIR Fails to Adequately Address Potential Odors from the Project	61
VIII.		HE DEIR'S ASSESSMENT OF ALTERNATIVES TO THE PROJECT IS ADEQUATE	62
A.	Tł	ne DEIR Does Not Evaluate A Legally Sufficient No-Project Alternative	62
В.		ne DEIR Analysis Rejecting Three Reduced Production Alternatives is Groun Erroneous Assumptions Regarding Petroleum Fuel Markets	
C.		ne DEIR Inappropriately Dismissed the Hydrogen Generation Technology ternative From Consideration	68
	1.	The DEIR Failed to Consider ZEH as Mitigation for Significant Project Impacts	69
	2.	The DEIR Ignored a Critical Fact Supporting the Scalability of ZEH	69
	3.	The DEIR Rejected ZEH Based on Unsupported, Invalid and Biased Cost Analysis	70

D	. The DEIR Alternatives Analysis Artificially Separates Alternatives that are Not Mutually Exclusive
E	The Project Purpose is Defined in a Manner So Narrow as to Skew the Analysis of Alternatives
IX.	THE DEIR'S ANALYSIS OF CUMULATIVE IMPACTS WAS DEFICIENT 72
А	. The DEIR Should Have Analyzed the Cumulative Impact of California and Other US Biofuel Projects on Upstream Agricultural Land Use
В	The DEIR Should Have Analyzed the Cumulative Impact of California Biofuel Production on the State's Climate Goals
С	. The DEIR Did Not Adequately Disclose and Analyze Cumulative Marine Resources Impacts
X.	THE DEIR SHOULD HAVE MORE FULLY ADDRESSED HAZARDOUS CONTAMINATION ISSUES ASSOCIATED WITH CONSTRUCTION AND DECOMMISSIONING
А	. The DEIR Inadequately Evaluate Project Impacts on Hazardous Waste Cleanup Operations
В	The DEIR Should Have More Fully Evaluated Impacts of Partial and Complete Decommissioning
XI.	THE DEIR INADEQUATELY ADDRESSED THE PROJECT'S IMPACTS ON MARINE RESOURCES
А	. The Wharf Throughput Expansion Would Result in Significant Water Quality Impacts, With Attendant Safety Hazards90
В	. The DEIR Wrongly Concludes There Would be No Aesthetic Impacts
С	. Air Quality Impacts Must Be Evaluated for an Adequate Study Area95
D	. Recreational Impacts Are Potentially Significant95
E	The Project Implicates Potential Utilities and Service System Impacts
F	Biological Impacts and Impacts to Wildlife are Potentially Significant and Inadequately Mitigated 96

G.	Noise and Vibration Impact Analysis is Insufficient	.98
H.	Transportation and Traffic Impacts Analysis is Inadequate	. 98
I.	Tribal Cultural Resources Impacts Analysis is Inadequate	. 98
J.	The Project Risks Significant Environmental Justice and Economic Impacts	. 98
K.	The DEIR Fails to Disclose and Analyze Significant Additional Impacts	. 99
	1. <u>Public Trust Resources</u>	.99
	2. <u>Cross-Border Impacts</u>	. 99
	3. <u>Terrorism Impacts</u>	. 99
XII.	CONCLUSION	99

APPENDIX A: Karras, G, *Changing Hydrocarbons Midstream*; technical report and accompanying supporting material appendix for Natural Resources Defense Council, San Francisco, CA, June 2021 (Karras, 2021a).

APPENDIX B: Karras, G, *Unsustainable Aviation Fuel;* technical report for Natural Resources Defense Council, San Francisco, CA, August 2021 (Karras, 2021b).

APPENDIX C: Karras, G, *Technical Report in Support of Comments Concerning Rodeo Renewed Project*; technical report prepared for Natural Resources Defense Council, San Francisco, CA, December 2021 (Karras, 2021c).

I. STATEMENTS OF INTEREST

The interest of each of the Commenters in the DEIR and Project impacts is as follows:

Asian Pacific Environmental Network (APEN) is an environmental justice organization with deep roots in California's Asian immigrant and refugee communities. Since 1993, APEN has built a membership base of Laotian refugees in Richmond and throughout West Contra Costa County. We organize to stop big oil companies from poisoning our air so that our families can thrive.

Biofuelwatch provides information, advocacy and campaigning in relation to the climate, environmental, human rights and public health impacts of large-scale industrial bioenergy. Central to the Biofuelwatch mission is promoting citizen engagement in environmental decision making in relation to bioenergy and other bio-based products – including bioenergy-related decisions on land use and environmental permitting.

California Environmental Justice Alliance (CEJA) is a statewide, community-led alliance that works to achieve environmental justice by advancing policy solutions. We unite the powerful local organizing of our members across the state in the communities most impacted by environmental hazards – low-income and communities of color – to create comprehensive opportunities for change at a statewide level through building community power. We seek to address the climate crisis through holistic solutions that address poverty and pollution, starting in the most over-burdened communities.

Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.3 million members and online activists dedicated to the protection of endangered species and wild places, public health, and fighting climate change. The Center works to secure a sustainable and healthy future for people and for all species, great and small, hovering on the brink of extinction. It does so through science, law, and creative media, with a focus on protecting the lands, waters, and the climate.

Citizen Air Monitoring Network is a community group started in 2016 in Vallejo. Our mission is to make sure the air quality in our community is healthy for all. Vallejo is situated in the middle of five refineries, and we are deeply concerned about the impact of their operation.

Communities for a Better Environment is a California nonprofit environmental justice organization with offices in Northern and Southern California. For more than 40 years, CBE has been a membership organization fighting to protecting and enhancing the environment and public health by reducing air, water, and toxics pollution. Hundreds of CBE members live, work, and breathe in Contra Costa County and the area surrounding the Marathon Refinery. The Northern California office is located in Contra Costa County.

Community Energy reSource offers independent pollution prevention, environmental justice, and energy systems science for communities and workers on the frontlines of today's climate, health, and social justice crises. Its work focuses on assisting communities with a just transition from oil refining and fossil power to clean, safe jobs and better health.

Extinction Rebellion San Francisco Bay Area (XRSFBay) is a local chapter of the global movement to compel business and government to address the climate and ecological crisis. We use nonviolent direct action, theater and art to bring the message that we are running out of time to prevent climate disaster and it is necessary to Tell the Truth, Act Now, Go Beyond Politics and Create a Just Transition for all beings in the Bay Area and beyond.

Fossil Free California is a nonprofit organization of climate justice volunteers. Many are members of the two largest public pension funds in the country, CalPERS and CalSTRS, which continue to invest in fossil fuel companies. Fossil Free California works to end financial support for climate-damaging fossil fuels and promotes the transition to a socially just and environmentally sustainable society. Together with allied environmental and climate justice organizations, we mobilize grassroots pressure on CalPERS and CalSTRS, as well as other public institutions, to divest their fossil fuel holdings.

Friends of the Earth is a national nonprofit environmental organization which strives for a more healthy and just world. Along with our 2 million members and activists we work at the nexus of environmental protection, economic justice and social justice to fundamentally transform the way our country and world value people and the environment. For more than 50 years, we have championed the causes of a clean and sustainable environment, protection of the nation's public lands and waterways, and the exposure of political malfeasance and corporate greed. Our current programs focus on promoting clean energy and solutions to climate change; ensuring a healthy, just and resilient food system where organic is for all; protecting marine ecosystems and the people who depend on them; and transforming our financial, economic and political systems.

Interfaith Climate Action Network of Contra Costa County County (ICAN) is a nonprofit environmental justice organization working group of California Interfaith Power and Light, whose offices are in Oakland. CA. The mission of ICAN is to inform and educate faith and non-faith communities and individuals about how to mitigate climate change, advocate with leaders of BILPOC communities before government agencies, industry and other organizations that need to hear our collective voices. They are committed to centering the voices of those most impacted by industry, particularly the communities close to the refineries in Contra Costa County.

Natural Resources Defense Council (NRDC) is a nonprofit environmental membership organization that uses law, science, and the support of more than 440,000 members throughout the United States to ensure a safe and healthy environment for all living things. Over 2,200 of NRDC's members reside in Contra Costa County, some of those in the City of Rodeo. NRDC has a long-established history of working to ensure proper oversight of refining activities and minimize their carbon footprint and other environmental impacts, and ensure that biofuels are produced in a sustainable manner.

Rainforest Action Network (RAN) preserves forests, protects the climate and upholds human rights by challenging corporate power and systemic injustice through frontline partnerships and strategic campaigns. RAN works toward a world where the rights and dignity of all communities are respected and where healthy forests, a stable climate and wild biodiversity are protected and celebrated. RAN is a collaborative organization that challenges corporate power and exposes institutional systems of injustice in order to drive positive systemic change.

Richmond Progressive Alliance is an association of members in Richmond, California, with the explicit goal of taking political decision-making back from corporations and putting power in the hands of the people. The RPA mobilizes people in support of progressive policies and candidates, often in alliance with other local groups.

Rodeo Citizens Association is a non-profit environmental organization with the primary purpose of providing a means for the citizens of Rodeo to address issues of local concern with respect to health, safety, and the environment. Currently, RCA's primary activity is focused on promoting responsible use of land and natural resources around the community and to engage in community outreach activities involving education and awareness of environmental protection issues impacting the region.

San Francisco Baykeeper (Baykeeper) has worked for more than 25 years to stop pollution in San Francisco Bay and has more than five thousand members and supporters who use and enjoy the environmental, recreational, and aesthetic qualities of San Francisco Bay and its surrounding tributaries and ecosystems. San Francisco Bay is a treasure of the Bay Area, and the heart of our landscape, communities, and economy. Oil spills pose one of the primary threats to a healthy Bay, and environmental impacts from increased marine terminal activity directly threaten Baykeeper's core mission of a Bay that is free from pollution, safe for recreation, surrounded by healthy beaches, and ready for a future of sea level rise and scarce resources. San Francisco Baykeeper is one of 200 Waterkeeper organizations working for clean water around the world. Baykeeper is a founding member of the international Waterkeeper Alliance and was the first Waterkeeper on the West Coast. Baykeeper also works with 12 Waterkeepers across California and the California Coastkeeper Alliance.

Stand.earth is a San Francisco-based nonprofit that challenges corporations and governments to treat people and the environment with respect, because our lives depend on it. From biodiversity to air, to water quality and climate change, Stand.earth designs and implements strategies that make protecting our planet everyone's business. Its current campaigns focus on shifting corporate behavior, breaking the human addiction to fossil fuels, and developing the leadership required to catalyze long-term change.

Sunflower Alliance engages in advocacy, education, and organizing to promote the health and safety of San Francisco Bay Area communities threatened by the toxic pollution and climatedisruptive impacts of the fossil fuel industry. They are a grassroots group committed to activating broader public engagement in building an equitable, regenerative, and renewable energy-fueled economy.

The Climate Center works to rapidly reduce climate pollution at scale, starting in California. The Climate Center's strategic goal is that by 2025, California will enact policies to accelerate equitable climate action, achieving net-negative emissions and resilient communities for all by 2030, catalyzing other states, the nation and the world to take effective and equity-centered climate action.

350 Contra Costa is a home base and welcoming front door to mobilize environmental activism. It is comprised of concerned citizens taking action for a better community. They envision a world where all people equitably share clean air, water and soil in a healthy, sustainable, and post-carbon future. It is a local affiliate of 350 Bay Area.

II. THE PROJECT DESCRIPTION IN THE DEIR IS LEGALLY INADEQUATE¹

An EIR must describe a proposed project with sufficient detail and accuracy to permit informed decision-making, as an inaccurate or incomplete project description renders the analysis of significant environmental impacts inherently unreliable. *See* CEQA Guidelines § 15124. "An accurate, stable and finite project description is the *sine qua non* of an informative and legally sufficient EIR." *San Joaquin Raptor/Wildlife Rescue Center v. County of Stanislaus*, 27 Cal.App.4th 713, 730 (1994), quoting *County of Inyo v. City of Los Angeles*, 71 Cal.App.3d 185, 193 (1977). "An accurate project description is necessary for an intelligent evaluation of the potential environmental effects of a proposed activity." *San Joaquin Raptor*, 27 Cal.App.4th at730 (citation omitted).

Accordingly, courts have found that even if an EIR is adequate in all other respects, the use of a "truncated project concept" violates CEQA and mandates the conclusion that the lead agency did not proceed in a manner required by law. *Id.* When an EIR fails to disclose the "true scope" of a project because it "concealed, ignored, excluded, or simply failed to provide pertinent information" regarding the reasonably foreseeable consequences of the project, then the EIR is inadequate as a matter of law because it violated the information disclosure provisions of CEQA. *Communities for a Better Environment v. City of Richmond* (2010) 184 Cal.App.4th 70, 82-83 ("*City of Richmond*").

The Project DEIR fails to meet basic CEQA requirements for complete and accurate project description. As described in more detail below, the DEIR's cursory description failed entirely to address the actual processes and process chemistry associated with biofuel refining; and failed to address the operational duration of the Project, which is highly relevant to impacts expected to worsen over time.

A. The Project Description Failed to Disclose All Project Components

1. <u>The DEIR Failed to Disclose Two Project Components Undertaken Separately From</u> <u>the Project Permitting Process</u>

The Project as described in the DEIR fails to describe two actions already taken by Phillips 66 that are functionally part of the Project, and therefore needed to be disclosed as such. These actions both involved physical changes within the refinery, integrated with and functionally interdependent with the proposed Project operation. Both were implemented contemporaneously after the Project application (Application) was filed.

Each of these undisclosed actions expands the scope and severity of potential impacts resulting from the Project. One of these actions, the unpermitted conversion of Unit 250, is identified in the DEIR but expressly – and incorrectly – disclaimed as part of the Project. The other action, the Nustar Shore Terminals project, is not identified or evaluated in the DEIR at all. The subsections below address each of these actions.

¹ Supplemental information in support of this analysis is provided in Karras 2021c accompanying this comment, in the section entitled "Project Description and Scope."

a. The Unpermitted Conversion of Unit 250

During 2021, Phillips 66 implemented the conversion of diesel hydrotreater Unit 250 within the Rodeo Facility from petroleum distillate to soybean oil processing² without a Clean Air Act permit and without any public review. In the DEIR, the County disclaims any connection between Unit 250 and the Project on the dubious ground that no further changes are proposed to it:

As explained in the Project Description, Section 3.7, Project Operation, the facility currently has the capacity to produce approximately 12,000 bpd of renewable fuels from pretreated feedstocks using Unit 250, which was previously used to process petroleum-based feedstocks. Unit 250 is not included in the Project as the Project does not propose any changes for Unit 250 and it would continue to produce 12,000 bpd of renewable fuels. Given that Unit 250 is not part of the Project, Unit 250 feedstock and production numbers are not included in this chart under the No Project Alternative.

DEIR at 5-11. But the fact that no *further* changes are proposed to Unit 250 is irrelevant to the question of whether the *previous* changes to that unit, completed after the Project application was filed, should have been considered as part of the Project. The relevant question is whether the changes to Unit 250 are *functionally* part of the Project – and by all indications they are. The Project would depend on Unit 250 to maximize onsite refining of the pretreated feed output; and in turn, Unit 250 would be dependent on the Project for economical access to pretreated feed, feedstock acquisition, and Unit 250 product distribution.³ It thus appears, based on all available information, to be an interdependent component of the Project that is essential to achieve a project objective to maximize project-supplied California biofuels.

Even more problematically, the conversion of Unit 250 earlier this year is currently under investigation by the Bay Area Air Quality Management District (BAAQMD) for potentially illegal construction, operation, or both without required notice, review and / or permits.⁴ Phillips 66 converted the unit without seeking BAAQMD approval.⁵ That investigation, and the possible misfeasance by Phillips 66, underscores the need for the DEIR to determine whether Unit 250 is functionally part of the Project and if so – which appears to be the case – evaluate it as such. The changes to Unit 250, to the extent they are part of the Project, would exacerbate its impacts, including those associated with feed acquisition, processing, and product distribution-related impacts.

Furthermore, the failure to include and disclose the Unit 250 changes as part of the Project appears to be related to a County decision to permit the Nustar biofuel action separately from the subject Project before allowing public comment on either action, as discussed below.

² PSX Q1 2021 Earnings Call.

³ Karras, 2021c.

⁴ BAAQMD, 2021.

⁵ See letter to Jack Broadbent from Ann Alexander et al., July 30, 2021; Email from Damian Breen to Ann Alexander, Sept. 9, 2021.

b. NUSTAR Shore Terminals

Nustar Shore Terminals—a liquid hydrocarbons transfer and storage facility contiguous with the Refinery—and Contra Costa County have taken actions to advance the "Nustar Soybean Oil Project" contemporaneously with the Project. According to a December 2, 2020 email from the County, this Nustar action would:

[I]nstall an approximately 2300-foot pipeline from Nustar to Phillips 66 to carry pretreated soybean oil feedstock to existing tankage and the Unit 250 hydrotreater at the Phillips 66 refinery, which can already produce diesel from both renewable and crude feedstocks (see attached site plan). The soybean feedstock will be unloaded at existing Nustar rail facilities which will be modified with 33 offload headers to accommodate the soybean oil. ... it was determined that the modifications proposed by Nustar would not require a land use permit. The appropriate building permits have been issued.⁶

Color-coding of these pipeline sections shown on the site plan referenced by the County indicates that the new feedstock pipeline sections reach far into the Refinery; and that the vast majority of new pipeline segments by length is "Phillips 66" rather than "Nustar" pipe.⁷

There is basis to conclude, in light of these facts, that the Nustar project is an undisclosed component of the Project. The new pipelines will be supplying soybean feedstock to the Refinery, and soybean feedstock will almost certainly be used in connection with the Project (*see* Section IV). It therefore should have been evaluated in the DEIR as part of the Project; or, at the very least, the DEIR should have explicitly described why the Nustar project was not included in the impacts analysis. Instead, the DEIR neglects entirely to even mention the Nustar project.

The County, which permitted the Nustar project separately, has taken the position that it is neither a project component nor a related project: "The [Nustar Soybean Oil Project] ... is not associated with the proposed Phillips 66 Rodeo Renewed refinery conversion ,,, [and] is a standalone project not related to the Rodeo Renewed refinery conversion"⁸ Yet this response offers no support for that conclusion. The County was obligated to either present and factually support that conclusion in the DEIR – *i.e.*, with facts demonstrating that the Nustar project will not, in fact, supply feedstock to the Project – or else evaluate the Nustar project as part of the Project DEIR analysis.

c. Terminal and Wharf Improvement Project at the Port of Los Angeles

Phillips 66 is also taking contemporaneous action to advance the Marine Oil Terminal (MOT) and Wharf Improvement Project (MOT Project) at the Port of Los Angeles (Port of LA) Berths 148-151 in Southern California.⁹ This proposed Port of LA project includes a request for

⁶ Email from Gary Kupp to Charles Davidson dated Dec. 2, 2020 and attached site map (Kupp, 2020a).

⁷ Kupp, 2020a.

⁸ Kupp, 2020a.

⁹ City of Los Angeles Harbor Department (LAHD), Draft Initial Study/ Mitigated Negative Declaration for Berths 148-151 (Phillips 66) Marine Oil Terminal (MOT) and Wharf Improvement Project (proposed Project) at the Port of Los Angeles (Port), Nov. 2021. <u>https://kentico.portoflosangeles.org/getmedia/d9b76ad6-9242-46e2-91b5-a7def9ac4e1f/Berths-148-151-P66-MOTEMS-Draft-IS-MND</u> (accessed Dec 14, 2021) [hereinafter LAHD P66 IS/Neg Dec 2019]

consideration of a new 20-year entitlement (with two potential 10-year additional options) in Wilmington, an environmental justice community. Other than the Rodeo and Santa Maria refineries, Phillips 66 has only one other refinery in California—its Los Angeles refinery in Carson and Wilmington, CA. Although that refinery is never mentioned by name, the Los Angeles Refinery Emergency Response Plan is cited in the issued Draft Initial Study and Negative Declaration.¹⁰

In the MOT Project, Phillips 66 proposes to demolish the timber wharf at Berths 150-151, replacing it with a new concrete wharf and associated equipment, for the stated purpose of compliance with safety standards. Yet it is clear from the MOT Project documents and larger circumstances that the MOT project may have a purpose, in part, of advancing the Rodeo Renewed Project. Most notably, the draft Initial Study and Negative Declaration describes its operations at the marine terminal as "load[ing] and unload[ing] oil commodities products such…naphthas, gasoline/gasoline blend stocks, diesel and jet fuels, and distillate blend stocks, *as well as renewables and renewable feedstocks*…" (emphasis added). Furthermore, Phillips 66 is requesting up to 40 years for continued operations at Berths 148-151 despite proposing to demolish the Santa Maria site.

There is no mention of these Port of LA activities in the Project DEIR. The only mention of Los Angeles, Los Angeles County, or Southern California generally in the DEIR is with reference to the geographic location of the Santa Maria Refinery or the geographic location of potentially affected cultural resources. DEIR at 4.5-182, 4.14-422. There is one implicit reference to the Los Angeles Refinery as the "the only other Phillips 66 refinery in California besides the Santa Maria Refinery is located in the Wilmington/Carson area in Los Angeles County" as evidence to show that Phillips 66 has no other Northern California refineries. DEIR at 5-5.

However, on December 9, 2021, CARB published Phillips 66's application for a Low-Carbon Fuel Standard (LCFS) Tier 2 Pathway,¹¹ which highlighted a transportation link between "Southern California" and the Rodeo project being reviewed in this DEIR. The consultant report compiled for the California Air Resources Board (CARB), with reference to its third application for canola oil, traces one feedstock route that is undisclosed in the DEIR. The report describes that "The [canola oil] shipment that was received was *first sent to Southern California* for some of the oil to be off loaded and then moved north to Rodeo for unloading the remainder of the cargo. This accounts for the long transportation distance"¹² (emphasis added).

Given that the Rodeo Renewed project is Phillips 66's only biofuel conversion project proposed in California and that the DEIR details the decommissioning of the Santa Maria refinery, DEIR at 3-31, it is likely that the biofuel feedstock coming into "Southern California" are through the Port of Los Angeles. This glimpse of a potential connection between the two

¹¹ Phillips 66 submitted a Tier 2 Pathway application for the same biofuels produced by the unpermitted and undisclosed Unit 250, described in a previous subsection. *See* (S&T)2 Consultants Inc., CARB LCFS Fuel Pathway Report Renewable Diesel Prepared for Phillips 66 Company, pp. 1-4, 7-9, Dec. 6, 2021, <u>https://ww2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/fuelpathways/comments/tier2/b0241_report.pdf</u> (ac

¹⁰ LAHD P66 IS/Neg Dec 2019, pp. 107.

cessed Dec 14, 2021) [hereinafter CARB LCFS P66 Pathway Report 2021] ¹² CARB LCFS P66 Pathway Report 2021, pp. 5.

CEQA applications merits discussion in the DEIR and further investigation by the County. The City of Los Angeles Harbor Department (LAHD) has only granted a 30-day comment period for this Draft Initial Study and Negative Declaration. The public review period for this Phillips 66 marine terminal expansion began running on November 18, 2021 and will close on December 20, 2021. The County should immediately contact the City of Los Angeles to evaluate the relationship between the two proposed projects and CEQA reviews, and request a comment period extension for the County and the public fully evaluate the matter.

B. The Project Description Failed to Describe Aspects of the Proposed Refining Process Essential to Analyzing Project Impacts

As discussed in the sections below, the Project aspects that the DEIR fails to describe, and that are critical to understanding its impacts, are manifold. They include the following:

- Process chemistry for Hydrotreating Esters and Fatty Acids (HEFA), the biofuel refining technology proposed for the Project.
- The class, types, and differing chemistries and processing characteristics of HEFA feedstocks which can have varying upstream environmental impacts of land use changes, air quality, and safety impacts.
- The geographic sources and existing volumetric supplies of each potential feedstock, necessary to fully disclose upstream environmental impacts of land use changes.
- Hydrogen demand associated with HEFA technology, including differential hydrogen demands for production targeting HEFA diesel versus jet fuel, which affect air emission levels.
- The process chemistry of proposed hydrogen production, which could coproduce carbon dioxide, to enable processing of HEFA feedstocks
- Known differences in hydro-conversion processing between petroleum and HEFA refining, which have potential to lead to increased risk associated with HEFA refining of process upset, process safety hazard, and flaring incidents
- A Project component designed to maximize jet fuel production, which has impacts that differ from diesel production, through onsite processing of petroleum.

The DEIR also fails to disclose the anticipated and technically achievable operating duration of the Project, information that is essential to evaluate potential Project impacts which can worsen over time.

1. <u>The DEIR Fails to Disclose Information Regarding the HEFA Biofuel Refining</u> <u>Process Essential to Evaluating its Impacts</u>

The HEFA biofuel refining technology proposed to be used for the Project has important capabilities, limitations, and risks that distinguish it from other biofuel technologies. These differences result in environmental impacts associated with HEFA technology that are unique or uniquely severe as compared with other biofuel technologies.

The DEIR, however, describes none of this. In its entire 400-plus pages, it does not once even mention or reference HEFA, or in any way describe what it is and how it works. This is a major deficiency, and inadequate disclosure that undercuts the integrity of the entire DEIR analysis, for reasons described throughout this Comment with respect to the risks and impacts that attend HEFA production.

The following subsections describe the aspects of the HEFA process that needed to be included in a description of the Project but were not.

a. HEFA as the Proposed Type of Processing

As noted above, the DEIR never once mentions that HEFA is the technology the Project would employ. It can be discerned nonetheless that HEFA is, in fact, the proposed technology, based on the Project's sole reliance upon repurposed refinery hydrotreaters and hydrocrackers for feed conversion to fuels, and upon repurposed refinery hydrogen plants to produce and supply hydrogen for that hydro-conversion processing. This is confirmed by independent expert review of the Project.^{13 14 15}

But the fact that technical experts (such as Commenters') can read between the lines and discern that HEFA is the proposed technology does not satisfy CEQA's requirement that the County directly disclose this information to the public. Such disclosure was particularly important here given the wide range of existing biofuel technologies and environmentally significant differences between them, and the significant environmental impacts that attend HEFA production. In a revised DEIR, the County should disclose, explain, and evaluate the specific impacts of HEFA production.

b. Capabilities and Limitations of HEFA

HEFA processing technology differs from most or all other commercially available biofuel technologies in many ways linked to environmental impacts, in ways that must be known in order to evaluate Project impacts.^{16 17 18} First, HEFA biofuels can be produced by repurposing

¹³ Karras, G, *Changing Hydrocarbons Midstream*; technical report and accompanying supporting material appendix for Natural Resources Defense Council, San Francisco, CA, June 2021 (Karras, 2021a).

¹⁴ Karras, G, *Unsustainable Aviation Fuel;* technical report for Natural Resources Defense Council, San Francisco, CA, August 2021 (Karras, 2021b).

¹⁵ Karras, G, *Technical Report in Support of Comments Concerning Rodeo Renewed Project*; technical report prepared for Natural Resources Defense Council, San Francisco, CA, December 2021 (Karras, 2021c). ¹⁶ Karras, 2021a and 2021b.

 $^{^{10}}$ Karras, 2021a and 202

¹⁷ Karras, 2021a.

¹⁸ Karras, 2021b.

otherwise stranded petroleum refining assets, thereby potentially extending the operable duration and resultant local impacts of large combustion fuel refineries concentrated in disparately toxic low income Black and Brown communities. Second, HEFA diesel can be blended with petroleum diesel in pipelines, petroleum storage tanks, and internal combustion vehicles in any amount, thereby raising the potential for competition with or interference with California climate goals for the development of zero-emission vehicles infrastructure for climate stabilization. Third, HEFA technology has inherent limitations that affect its potential as a sustainable substitute for petroleum diesel, jet fuel, or both - including its low yield on feedstock, high hydrogen demand, and limited feedstock supply. The DEIR fails to disclose or describe any these basic differences between HEFA and other biofuels (having failed to even mention HEFA at all), thereby obscuring unique or uniquely pronounced environmental consequences of the type of biofuel project proposed.

c. HEFA process chemistry

HEFA process chemistry reacts lipidic (oily) vegetable oils and animal fats with hydrogen over a catalyst at high temperature and very high pressure to produce and alter the chemical structure of deoxygenated hydrocarbons. Although this is done in repurposed refinery equipment, this process chemistry is radically different from petroleum processing in respects that lead directly to potential environmental impacts of the Project.¹⁹ Moreover, site-specific differences in process design conditions²⁰—which have been reported in other CEQA reviews for oil refining projects²¹—can affect the severity of impacts significantly. The DEIR fails to disclose or describe this basic information.

d. Differing hydrogen demand associated with different feedstocks and product slates

Known environmental emissions and hazards of HEFA processing are related in part to the amount of hydrogen demand per barrel of feed converted to biofuel, which varies significantly among HEFA feedstocks and product production targets.²² The DEIR does not disclose this data. Moreover, to a significant degree, process hydrogen demand and thus resultant impacts may vary depending on plant and Project-specific design specifications, data the DEIR likewise fails to disclose or describe.

e. Process chemistry of proposed hydrogen production

This deficiency in the DEIR project description fails to inform the public of known climate impacts the proposed Project would cause and fails to disclose data necessary to adequate review of Project impacts. First, the DEIR fails to specifically disclose that the type of hydrogen production proposed for this "renewable" fuels Project would use fossil gas hydrogen

¹⁹ Id.

²⁰ In addition to process-specific operating temperatures, pressures, and engineered process controls such as quench and depressurization systems, examples include process unit-specific input, internal recycle rates, hydrogen consumption rates, and even how those operating conditions interact across refining processes to affect overall hydrogen demand when processing feedstocks of various qualities.

²¹ See Chevron Refinery Modernization Project, SCH# 2011062042, DEIR Appendix 4.3–URM: Unit Rate Model. ²² Id.

production, which, because of its production chemistry, can emit roughly ten tons of carbon dioxide per ton of hydrogen produced.²³ The DEIR further fails to describe the high *and* variable carbon intensity of fossil gas hydrogen technology among specific plants and refineries;²⁴ and the Project-specific hydrogen production design data necessary for impact estimation.

f. Differences between HEFA and petroleum refining that increase risk of process upset, process safety hazard, and flaring incidents

There is a risk of upsets, fires, explosions, and flaring (Section V) linked to specific process hazards that switching from petroleum to HEFA processing has known potential intensify.²⁵ The DEIR fails to disclose the aspects of the HEFA process creating these hazards, and fails to describe the known differences between HEFA and crude refining that could worsen these impacts.

g. Process upset, process safety hazard, and flaring incident records at the Refinery

The risk of explosion, fire, and flaring impact of the proposed HEFA refining is associated with specific design and operating specifications of the Refinery units proposed for conversion. These specifications, and the attendant risk, can be estimated using available data concerning past incidents involving the same units.^{26 27} The DEIR fails to disclose of address this incident data.

The failure to describe anything at all about the proposed new technology makes a meaningful evaluation of its impacts impossible. Moreover, failing to name and describe HEFA technology eliminated the opportunity for the County to assess whether an alternative biofuel production technology (e.g., Fischer-Tropsch synthesis) might result in different impacts. This analytical limitation was compounded by the DEIR's overly narrow description of the Project's purpose described in Section VIII, which accepted at face value Marathon's commercial desire to repurpose its stranded asset to the greatest extent possible, an assumption that biased the DEIR against consideration of alternative technologies.

2. The DEIR Fails to Disclose Adequate Information Concerning HEFA Feedstocks

HEFA feedstock is limited to lipids (triacylglycerols and fatty acids freed from them) produced as primary or secondary agricultural products, but there are many different oils and fat in this class of feedstocks, and many environmentally significant differences between them in terms of chemistry and process characteristics.²⁸ As discussed in Sections IV, VI, and VII, choice of feedstock has a major effect on the magnitude and potential significance of multiple impacts, from upstream land use impacts to process safety to air emissions.

²⁷ BAAQMD Causal Reports for Significant Flaring. BAAQMD Regulations, §12-12-406 of Regulation 12, Rule 12; Bay Area Air Quality Management District: San Francisco, CA. https://www.baaqmd/gov/rules-and-compliance/current-rules

²³ Karras, 2021a.

²⁴ Sun et al. 2019. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Reforming Facilities. *Environ. Sci. Technol.* 53: 71.3–7113. DOI: 10.1021/acs.est.8b06197

²⁵ Karras, 2021a,

²⁶ Id.

The DEIR, however, declines to identify proposed Project feedstocks with any specificity, stating only that anticipated feedstocks include, without limitation, used cooking oil (UCO), fats, oils, and grease (FOG), tallow, "inedible" corn oil (presumably meaning distillers corn oil, or DCO), canola oil, soybean oil (SBO), "other vegetable-based oils," and/or "emerging and other next-generation feedstocks." DEIR at 3-25-27. The document does not disclose or analyze the percentage of each feedstock anticipated to be used, stating that it is not feasible to predict source and types of feedstocks because feedstock choice will be "influenced by business considerations and market conditions - described to include commodity prices and fungibility. *Id.* at 3-27.

This description is entirely inadequate to inform the public regarding the nature and impacts of the Project – regardless of whether or not it is possible to specify an exact quantity of each feedstock that will be used into the future. Even the absence of such precise information, the County was obligated to use available information to estimate the likelihood of any given feedstock or combination of feedstocks will be used. Section IV details some of that information on upstream environmental impacts of land use changes, presenting multiple sources of data concerning availability and current use patterns of known feedstocks. That information is sufficient to develop at least a reasonable prediction of the likely mix, or range of potential mixes.

The DEIR should have developed scenarios (including a reasonable worst case scenario – *see* Section IV) for likely feedstock mixes. It should also have specified likely sources for anticipated feedstocks, necessary to facilitate analysis of the upstream environmental impacts of land use changes described in Section IV. Then, as described in that section, the DEIR should have evaluated capping the use of particular feedstocks as a mitigation measure.

3. <u>The DEIR Fails to Disclose a Project Component Designed to Debottleneck</u> <u>Hydrogen-limited Onsite Refining Capacity</u>

Phillips 66 added a Project component after the public scoping process that is not disclosed in the DEIR, but may result in significant impacts. This component would relieve a bottleneck in hydrogen-limited biofuel processing at the Refinery by repurposing additional existing refinery equipment to co-produce hydrogen as a byproduct of processing gasoline feedstocks derived from semi-refined petroleum imported to Rodeo. Although the DEIR identifies the physical changes integrated into the Project post-scoping, it does not identify the purpose of these changes as de-bottlenecking, and hence fails to disclose and evaluate the environmental impacts of such debottlenecking, which will result in additional onsite processing of petroleum and biomass.

As discussed in the previous subsection, the DEIR does not address the process role of hydrogen in the HEFA process at all; and hence does not evaluate HEFA process demand. As such, it fails to identify an existing hydrogen bottleneck at the Refinery which, if removed, would enable processing the additional pretreated feedstock the revised Project would produce. The County could (if it had focused on the HEFA process at all) have readily identified this bottleneck by comparing hydrogen production capacity and process hydrogen demand data for the disclosed Project components.²⁹ Had it done so it would have found that the repurposed hydrogen plants cannot actually supply enough hydrogen to refine 80,000 b/d of pretreated vegetable oils; and that this hydrogen bottleneck is particularly severe for jet biofuel production. Targeting HEFA jet fuel, a more hydrogen-intensive refining mode,³⁰ the hydrogen bottleneck could limit onsite biofuel refining capacity to only about 60% to 70% of pretreated feed capacity.³¹

The debottlenecking can be discerned to changes Phillips 66 made with respect to permit retention. The company changed its original Project description so as to retain permits for existing refinery coking and naphtha reforming units, so that those units could continue or resume operation as part of the Project.³² Refinery crude distillation units would be shuttered upon full Project implementation,³³ and the coking and reforming units would not process HEFA feedstock or whole crude. Instead, repurposing the coking and reforming units would involve processing semi-refined petroleum acquired from other refineries. Phillips 66 recently stated in other contexts that it is shifting the specialty coke production from its petroleum refining to produce graphite for batteries³⁴ and planning to use the Rodeo coking unit for that purpose.³⁵ The coking would co-produce light oils its reformers would then convert to gasoline blend stocks.

The debottlenecking element is that the light oil reforming would in turn co-produce hydrogen, thereby alleviating the jet biofuel production bottleneck described above. The DEIR nowhere identifies this important impact of the retained permits.

This undisclosed hydrogen debottlenecking action and the disclosed Project components would be interdependent components of the Project. The hydrogen debottleneck component depends on repurposing coking and reforming units that the Project would free from crude refining support service. The disclosed Project components, in turn, depend on the undisclosed hydrogen debottleneck for the ability to use their full capacity to produce biofuels, and especially HEFA jet fuel. Indeed, without relieving the hydrogen bottleneck the Project might not long be viable. The hydrogen debottleneck component would afford the ability to engage in more hydrogen-intensive jet fuel processing, which could boost jet biofuel yield on biomass feedstock from as little as 13% to as much as 49%.³⁶ That could allow shifting to jet biofuel production without more drastic cuts in total Project biofuel production as State zero-emission vehicle policies phase out diesel biofuels along with petroleum diesel demand.

Thus, Phillips 66 is highly incentivized to debottleneck its biorefinery; has asserted informal plans *and* formal Project objectives³⁷ consistent with that result; and crucially, has changed its Project to include the specific equipment which would be used to debottleneck the

²⁹ Karras, 2021b.

³⁰ Id.

³¹ Karras, 2021c.

³² BAAQMD Application, 2021. Compare also Phillips 66 initial Project Description; DEIR pp. 3-28, 3-29.

³³ DEIR pp. 3-28, 3-29.

³⁴ Phillips 66 3Q 2021 Earnings Conference Call; 29 Oct 2021, 12 p.m. ET.

³⁵ Personal communication between Charles Davidson, Rodeo Citizens Association, and Greg Karras, Community Energy reSource. 28 October 2021.

³⁶ Pearlson et al., 2013.

³⁷ DEIR p. 3-22 (objectives to maximize production of renewable fuels and reuse existing equipment to do so).

Project's capacity. In the absence of a binding assurance that petroleum products processing will cease, the DEIR should have identified this hydrogen debottleneck as a component of the Project, and its potentially significant environmental impacts evaluated and mitigated to the extent possible.

C. The Project Description Failed to Disclose the Operational Duration of the Project, Essential to Describing Impacts that Worsen Over Time

Essential to evaluating environmental impacts of the Project is knowing the period over which the impacts could occur, and could worsen. Thus, the operational duration of the Project is highly relevant to evaluating impacts that may accumulate or otherwise worsen over time.

However, the DEIR fails to disclose the anticipated and technically achievable operational duration of the Project. The necessary data and information could have been obtained from various sources. First, the County should have taken into consideration the declining place of combustion fuel as California moves toward its climate goals, and the County fulfils its own "Diesel Free in '33" pledge (Section VI). Additionally, the County could have requested operational duration data from Phillips 66 as necessary supporting data for its permit application. Such data could also have been accessed from publicly reported sources. For example, process unit-specific operational duration data from Bay Area refineries, including data for some of the same types of process units to be repurposed by the Project, have been compiled, analyzed and reported publicly by Communities for a Better Environment.³⁸

III. THE DEIR IDENTIFIES AN IMPROPER BASELINE FOR THE PROJECT³⁹

The DEIR commits a major error in using an operating crude oil refinery as a baseline for determining impact significance. All available information indicates that Phillips 66 is in the process of phasing out its Santa Maria refinery, the only available source of petroleum feedstock for the Refinery, regardless of whether the County grants a permit for the Project. The end of petroleum refining at the Refinery is thus inevitable in the near term, with or without the Project. It is hence deeply misleading that the DEIR identifies previous years in which the Refinery was fully operational as a Project baseline. Failure to inform the public of the Refinery's existing trajectory toward ending petroleum processing creates the incorrect impression that the Project reflects a reduction in impacts from an artificially inflated baseline.

A. CEQA Requires Use of an Accurate Baseline

The purpose of a description of baseline conditions is "to give the public and decision makers the most accurate and understandable picture practically possible of the project's likely near-term and long-term impacts." CEQA Guidelines at 15125(a). The baseline should generally "describe physical environmental conditions as they exist at the time the notice of preparation is published." CEQA Guidelines § 15125. But where "use of existing conditions

³⁸ Karras, 2020. Decommissioning California Refineries

³⁹ Supplemental information in support of this analysis is provided in Karras 2021c accompanying this comment, in the section entitled "The DEIR Obscures the Significance of Project Impacts by Asserting an Inflated Alternative Baseline Without Factual Support."

would be either misleading or without informative value to decision makers and the public," use of a baseline reflecting projected future conditions is appropriate. *Id.* § 15125(a)(1) and (2).

"An approach using hypothetical allowable conditions as the baseline results in 'illusory' comparisons that 'can only mislead the public as to the reality of the impacts and subvert full consideration of the actual environmental impacts,' a result at direct odds with CEQA's intent." *Communities for a Better Environment v. South Coast Air Quality Management District*, (2010), 48 Cal4th 310, 322. Accordingly, the existence of permits allowing a certain level of operation is not appropriately determinative of baseline "physical environmental conditions." *Id.* at 320-21 ("A long line of Court of Appeal decisions holds, in similar terms, that the impacts of a proposed project are ordinarily to be compared to the actual environmental conditions existing at the time of CEQA analysis, rather than to allowable conditions defined by a plan or regulatory framework.").

Thus, the DEIR analysis concerning baseline identification is legally deficient. The issue is not whether the Refinery's emissions fluctuated over time during past years. DEIR at 3-36, citing CEQA Guidelines § 15125(a)(1). It is that the Refinery's current existing conditions reflect a winding down of its crude oil processing operations; such that its inevitable near-term future conditions involve not processing crude oil at all.

B. Available Evidence Makes Clear that Phillips 66 is Winding Down Operations at the Refinery Regardless of Whether the Project Moves Forward

The DEIR selects 2019 as the baseline year for evaluating Project impacts. DEIR at 3-37 - 38. However, this choice of baseline reflects neither current nor near-term future reality. In fact, the steadily declining availability of crude feedstock supply to the Refinery makes clear that it is simply not possible that 2019 production levels will continue indefinitely.

As discussed in detail in the sections below, available evidence leads to the conclusion that the Phillips 66 Santa Maria refinery (Santa Maria facility) and Refinery which functionally depends on it are on a trajectory to reduce or cease their crude processing operations in the relatively near term even if the County does not approve the Project, due to supply limitations and the increasingly poor economics of crude oil refining. Thus, the appropriate baseline for assessing Project impacts is not indefinitely continued crude oil refining, but rather a slowdown or shutdown of one or both facilities. This would mean that the Project would not achieve all - or possibly any – of the claimed emissions reductions set forth in the Project application; and might, in fact, increase emissions significantly over the baseline.

The near-term inevitability of the Refinery's curtailment or closure is evident in the history of the Refinery's operations, and available public data, as discussed in the sections below. Indeed, it is evident even in the Project application (Application), which assumes closure of the Phillips 66 Santa Maria facility – a current source of Rodeo feedstock via pipeline. It asserts that Phillips 66 needs authorization to increase crude and gas oil imports over its Rodeo marine terminal by up to 73,818 barrels per day⁴⁰ (b/d) until its biofuel conversion is built and

⁴⁰ The current marine terminal input limit is 51,182 b/d, and Phillips 66 proposes to increase that limit up to 125,000 b/d. Notice of Preparation at 3.

fully online,⁴¹ "to accommodate the idling and decommissioning of the Santa Maria facility in San Luis Obispo County."⁴² Yet the Application does not specifically identify closure of the Santa Maria refinery as a component of the Project – it simply assumes it as a background fact.⁴³

The following sections address in detail why the DEIR conclusions re an appropriate baseline are based in inadequate informational disclosure, and unsupported by substantial evidence.

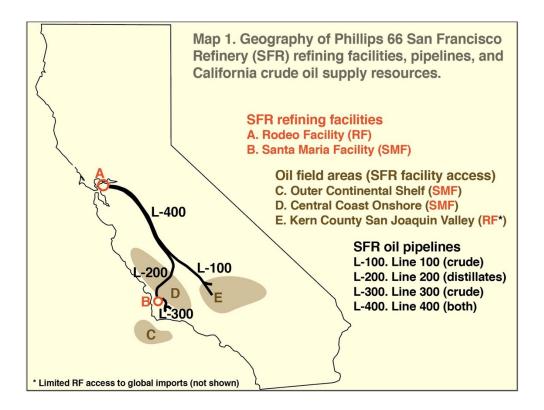
1. <u>Inherent Infrastructure Constraints Limit Crude Feedstock Availability to the SF</u> <u>Complex</u>

The DEIR expressly acknowledges that continued crude refining would be infeasible at the Refinery if and when the Refinery loses access to crude and semi-refined crude from the Santa Maria facility and pipeline system. DEIR at 5-3. As discussed below, the Santa Maria facility is essential to the Refinery's ability to obtain refining feedstock other than crude brought in over the wharf.

It is thus fatal to the DEIR's baseline analysis that the DEIR fails to disclose factors that are already leading to the inevitable near-term closure of the Santa Maria facility, regardless of the Project. Specifically, the DEIR fails to disclose or evaluate (and also erroneously describes) the functional interdependence of the Refinery, Santa Maria facility, and pipeline system as essential components of the San Francisco Refining Complex (SF Complex); the unique geography of these SF Complex components; and the resultant unique limitations in currently accessible crude feedstock for the Santa Maria facility and hence for the Refinery. These unacknowledged limitations on the Refinery's ability to operate exist independently of Projectrelated decisionmaking. And as discussed below, they will make continued crude processing at the Refinery at historic levels impossible – belying the baseline identified in the DEIR.

Map 1 illustrates the unique geographic distribution of SF Complex refining and pipeline components, in relation to the landlocked crude resources the SF Complex was uniquely designed to access for feedstock - including pipeline-linked Outer Continental Shelf (OCS), Central Coast onshore, and San Joaquin Valley crude resources.⁴⁴ Crucially, the Santa Maria facility, marked "B" in Map 1, has no seaport access to import foreign and Alaskan crude via marine vessels,⁴⁵ which refiners statewide have come to rely upon for the majority of statewide refinery feedstock.⁴⁶

⁴¹ The increase would be from the current marine terminal input limit of 51,182 barrels per day (b/d) limit now to 125,000 b/d.


⁴² Application at 12.

⁴³ *Id.* at 11-12 (listing Project components).

⁴⁴ Map 1 is only approximately to scale, consistent with facility and pipeline maps in the DEIR, and based also upon state and federal oilfield location and accessibility data, as documented in Karras, 2021c.

⁴⁵ SLOC, 2014. *Phillips 66 Company Rail Spur Extension and Crude Unloading Project Revised Public Draft Environmental Impact Report;* prepared for San Luis Obispo County (SLOC) by Marine Research Specialists (MRS). October 2014. SCH# 2013071028. Excerpt including title page and project description.

⁴⁶ Crude Oil Sources for California Refineries; California Energy Commission: Sacramento, CA. (CEC, 2021a).

As illustrated, the sources of crude for the Santa Maria facility are very limited. There is only one local pipeline supplying crude to the Santa Maria facility, limiting its ability to access crude from outside the local area.⁴⁷ The Santa Maria facility has access to several local onshore oilfields via truck transport to a local pipeline pump station, but such transport is sufficient to supply only about half of the facility's capacity.⁴⁸ As of 2014, OCS oilfields connected to the Santa Maria facility's single crude input pipeline via pipelines from Santa Barbara County ("C" in Map 1) supplied up to 85% of the Santa Maria facility crude input.⁴⁹ By contrast, the largest still-producing onshore oilfield that historically supplied the Santa Maria facility, the San Ardo oilfield in Monterey County (part of "D" in Map 1) supplied only 5–10% of its crude as of 2014.⁵⁰ The DEIR does not disclose this crude supply limitation of the Santa Maria facility – and hence the Refinery - or evaluate the Refinery's resultant reliance on the portion of OCS crude which the Santa Maria facility can access via pipelines and historically smaller onshore crude resources in San Luis Obispo County and parts of Santa Barbara and Monterey counties ("D" in Map 1).⁵¹

The DEIR commits a clear error in its setting description that further obscures the Santa Maria facility's very limited access to crude oil supply – indicating access to resources that that facility does not, in fact, have. Pipeline system Line 100 ("L-100" in Map 1), which runs from Kern County oilfields in the San Joaquin Valley ("E" in Map 1), does not connect at all to the Santa Maria facility. It runs north to the junction with Line 200 from the Santa Maria facility

⁴⁷ SLOC, 2014.

⁴⁸ SLOC, 2014.

⁴⁹ SLOC, 2014.

⁵⁰ SLOC, 2014.

⁵¹ Karras, 2021c.

and Line 400 to the Refinery, where the Kern crude and partially refined oil output from the Santa Maria refinery both flow north through Line 400 to the Refinery.⁵² The DEIR, however, erroneously describes Line 100 as directly supplying the Santa Maria refinery: "Two other pipelines—Line 100 and Line 300—*connect the Santa Maria Site* to crude oil collection facilities elsewhere in California ... [including] Kern County" DEIR at 3-21 (emphasis added). This clear error in the DEIR obscures the fact that the Santa Maria refinery lacks access to San Joaquin oilfields—the largest remaining regional crude resource in California.^{53 54}

The Refinery likewise lacks access to the Kern County oil fields if the Santa Maria facility closes, despite the fact that Line 400 (connected to the Kern County fields via Line 100) runs directly to it. The DEIR correctly states that the entire pipeline system would shutter in place when the Santa Maria facility closes, providing that conclusion as a reason for a "transitional" increase in permitted crude inputs to the Refinery through its marine terminal. DEIR at 3-32; *see Id.* at 5-3.⁵⁵ Although the DEIR does not explain this, the reason the pipeline system would not continue to function after the closure of the Santa Maria facility is that lines 100 and 400 cannot physically function effectively without input from the Santa Maria facility. This is because the naphtha and pressure distillate from the Santa Maria facility thins the viscous (thick like molasses) Kern County San Joaquin Valley Heavy crude ("E" in Map 1), thus enabling it to move through Line 400 to the RF.⁵⁶

Thus, in baseline conditions – without the "transitional" marine terminal throughput increase – the Refinery's only potential source of crude is the limited volume of crude it can bring in over the wharf at currently permitted volumes. Those permitted volumes are enough to supply only 47 percent of the Refinery's throughput capacity, as explained in the DEIR analysis of the alternative of shutting down the Santa Maria facility but keeping the Refinery open. DEIR at 5-3. Processing only these limited volumes brought in over the wharf over current limits would result in the refinery operating at a far lower throughput rate than described in the DEIR's baseline scenario. The DEIR functionally already recognizes that this scenario is not realistic, having acknowledged that continued crude refining would be infeasible at the Refinery if and when the Refinery loses access to crude and semi-refined crude from the Santa Maria facility and pipeline system. DEIR at 5-3.

⁵² Karras, 2021c. Careful review of DEIR Figure 3-5 confirms this accurate description of pipeline flows, once the reader knows that crude <u>does not</u> flow to the SMF through Line 200. However, the erroneous assertion in the text on page 3-21 of the DEIR is misleading on that point because it could only make sense by assuming the opposite. ⁵³ Karras, 2021c.

⁵⁴ This error in the DEIR further compounds its failure to disclose the Santa Maria facility's – and hence the Refinery's – very limited access to crude, in the absence of seaport access. Gasoline, diesel and jet fuel production from the crude accessed and partially refined into naphtha and gas oil ("pressure distillate") at the Santa Maria facility, then sent through lines 200 and 400, relies entirely on further processing at the Refinery ("A" in Map 1). This too, is not described in the DEIR.

⁵⁵ Karras, 2021c.

⁵⁶ Karras, 2021c.

2. <u>The Permitting History of the Refinery Evidences Declining Crude Feedstock</u> <u>Availability</u>

Having failed to accurately describe the infrastructure constraints limiting the Refinery's access to crude oil, the DEIR further fails to disclose information indicating that even this limited supply is diminishing – hence, by the company's own admission, foreclosing the Refinery's ability to continue processing crude at historic levels in the absence of the Project. Had they been included in the DEIR, would have contravened the County's conclusion that these historic levels represent an appropriate baseline (and no project alternative, as discussed in Section VIII).

Specifically, the DEIR fails to disclose that prior to proposing this Project, Phillips 66 warned that lack of access to crude oil, with such access being circumscribed as described in the subsection above, could lead to processing rate curtailments at the Refinery. On September 6, 2019 Carl Perkins, then the Phillips 66 Rodeo refinery manager, wrote Jack Broadbent, the Executive Director of the Bay Area Air Quality Management District, offering "concessions" in return for advancing a project proposed by the refiner to increase crude and gas oil imports to the Refinery via marine vessels.⁵⁷ Perkins stated that proposal—which was never approved or implemented—would "greatly enhance the continued viability of the Rodeo Refinery if and when California-produced crude oil becomes restricted in quantity or generally unavailable as a refinery process input."⁵⁸ Perkins further stated that the refiner "seeks to ensure a reliable crude oil supply for the future. If this potential process input problem is not resolved, it could lead to processing rate curtailments at the [Rodeo] refinery …."⁵⁹

Underpinning these concerns with continued crude oil availability at the Refinery is the fact that the economics of obtaining feedstock from the Santa Maria facility are becoming less optimal; that production at the Santa Maria facility has been sharply declining.; and that these factors led to a decision to close the Santa Maria facility independent of the Project. Before its warning to the Bay Area Air Quality Management District described above, and before applying to that air district for expanded crude imports through the Refinery's marine terminal, Phillips 66 sought access to new sources of crude via oil trains which would unload crude imported from other U.S. states and Canada at a proposed new Santa Maria facility rail spur extension.⁶⁰ In its review of that proposed rail spur, San Luis Obispo County described the limited Santa Maria facility access to crude and how that limited its access to competitively priced crude, then previewed, during 2014, the 2019 warning by Phillips described herein above: "Phillips 66 would like to benefit from these competitively priced crudes. In the short-term (three to five years), the availability of these competitively priced crudes would be the main driver ... In the long-term, the ... remaining life of the refinery is dependent on crude oil supplies, prices and overall economics."⁶¹ The DEIR does not disclose those findings. And in fact, permits for that rail spur extension were denied and it was never built. The DEIR fails to evaluate whether the "long-term" need to replace declining sources of crude for the Refinery identified in 2014 is now an acute short-term need.

⁵⁷ Perkins, 2019.

⁵⁸ Perkins, 2019.

⁵⁹ Perkins, 2019.

⁶⁰ SLOC, 2014.

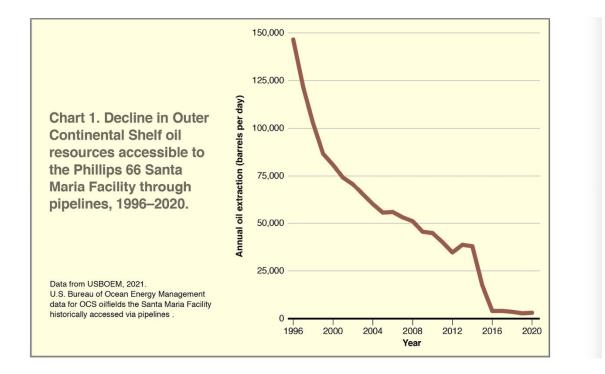
⁶¹ SLOC, 2014.

Recent events, undisclosed in the DEIR, indicate the need is, indeed, acute at the Santa Maria facility on which the Refinery depends. By 2017, ExxonMobil proposed to temporarily truck crude to the Santa Maria facility, a proposal the Santa County Planning Commission later voted to deny.⁶² Phillips 66 abandoned its proposed Santa Maria facility pipeline replacement project in August 2020.⁶³ This fact strongly indicates that the company's plan to decommission the Santa Maria facility was developed independently from the Project, and was already underway before Phillips 66 filed its Application with the County.

Overall, it is important to recognize that no other California refinery is built to access isolated crude resources with landlocked front-end refining hundreds of pipeline miles from its back-end refining. And no other faces the crisis this built-in reliance on geographically limited and finite resources has wrought. The DEIR's failure to recognize and address these unique circumstances faced by the Refinery is a fatal flaw.

3. <u>Available Crude Supply Data Demonstrate Declining Feedstock Availability at the Santa Maria Facility</u>

The County could and should have disclosed and considered, in setting the baseline, abundant crude oil production data indicating that available supply to the Santa Maria facility – and hence to the Refinery – is being steadily choked off as the California production on which it is dependent declines. Failure to do so undercuts the validity of the baseline determination, and renders it unsupported by substantial evidence. Given the decline trajectory, there is no sound basis to assume that future production levels at the Santa Maria facility and the Refinery will continue to match 2019 levels. Indeed, the decline points to and supports an inference that the Santa Maria facility is already headed for closure.


In 2014 San Luis Obispo County conducted the type of crude access limitation review for the Santa Maria facility that found steeply declining crude feedstock availability. This review was referenced in the Scoping Comments but ignored by the County. It should not have been, because it is pertinent to the question of baseline and clearly undercuts the DEIR's conclusion regarding it. It should hence have been disclosed and addressed in the DEIR – especially given that (as discussed below and above), constraints have only gotten more severe in the intervening years. San Luis Obispo County found that as of 2014, the facility's continuing crude supply was already in doubt:

Having only one pipeline system available for delivering crude oil to the refinery limits the [Santa Maria facility] refinery's ability to obtain crude oil from sources outside the local area. ... In the long-term, the need [for the Santa Maria facility to access new sources of crude] could be driven by declines in local production of crude oil that can be delivered by pipeline. Production from offshore ... (OCS crude) has been in decline for a number of years. Oil production in Santa Barbara County (both onshore and offshore) peaked at about 188,000 barrels in 1995 ...

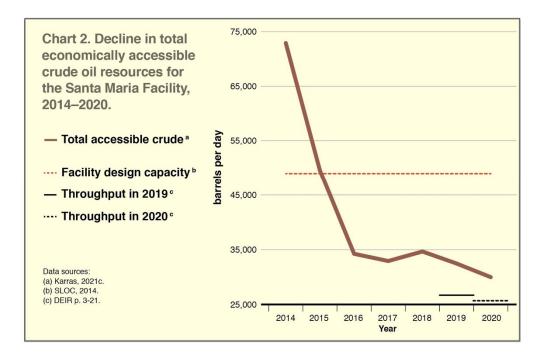
 ⁶² SBC, 2021. *ExxonMobil Interim Trucking for SYU Phased Restart Project Status, Description, Timeline;* Santa Barbara County Department of Planning & Development. Website page accessed 18 November 2021.
 ⁶³ Scully, J., 2020. Phillips 66 Plans 2023 Closure of Santa Maria Refinery, Pulls Application for Pipeline Project. https://www.noozhawk.com/article/phillips 66 closure of santa maria refinery planned for 2023 20200813

and currently production is around 61,000 barrels per day for both onshore and offshore oil fields [T]he success and amount of additional production from [new] projects is currently speculative.⁶⁴

Currently available data confirm that feedstock availability at the Santa Maria facility has continued to deteriorate through the present time. The U.S. Bureau of Ocean Energy Management (BOEM) reports production data for OCS oilfields that the Santa Maria facility historically and currently can access via pipelines.^{65 66} These data, which the DEIR does not disclose or discuss, are summarized in Chart 1.

The BOEM data illustrated in Chart 1 indicate that crude production from OCS oilfields that the Santa Maria facility has historically been able to access continued in steep long-term decline after the 2014 San Luis Obispo analysis. From an annual average of approximately 146,000 barrels per day (b/d) in 1996, OCS oil production from these fields,⁶⁷ collectively, fell by 98% to approximately 3,000 b/d in 2020.⁶⁸ Had the DEIR disclosed these data, the County could and should have found that the historically dominant OCS source of crude refined by the Santa Maria facility is in steep terminal decline; and hence that a baseline grounded in assumptions of historic production levels is unsupportable.

⁶⁴ SLOC, 2014.


⁶⁵ USBOEM, 2021a. U.S. Bureau of Ocean Energy Management. *Pacific Production;* data tables for the Pacific OCS Region, 1996–2021. https://www.data.boem.gov/Main/PacificProduction.aspx#ascii

⁶⁶ USBOEM, 2021b. U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement/Bureau of Ocean Energy Management, Pacific OCS Region. Map updated May 2021.

⁶⁷ These OCS oilfields that the SMF could historically or currently access via pipelines are the Point Pedernales, Point Arguello, Hondo, Pescado, and Sacate fields. <u>See</u> USBOEM, 2021b.

⁶⁸ USBOEM, 2021a.

State data, also not disclosed or addressed in the DEIR, further support a conclusion that available feedstock for the Santa Maria facility (and hence the Refinery) is steadily and precipitously declining. The California Air Resources Board (CARB) and the Geologic Energy Management Division (CalGEM, formerly DOGGR) both have collected data concerning the total annual amounts of crude actually refined from each OCS and State offshore and onshore oilfield.⁶⁹ The County could have, but did not, report and evaluate changes in the annual volumes of crude actually refined in California which were derived from OCS and onshore oilfields that the SMF can access.⁷⁰ Chart 2, based on the CalGEM/DOGGR data, confirms the declining availability of crude feedstock supply to the Santa Maria facility.⁷¹

The falling brown curve illustrates the rapid decline in total crude accessible to the Santa Maria facility that was refined statewide since 2014. Most importantly, its fall below the dashed red line indicates this dwindling crude supply could no longer support Santa Maria facility operation at or even near capacity. From approximately 73,000 b/d in 2014, total refining of Central Coast onshore, offshore, and OCS crude accessible to the Santa Maria facility via truck and pipeline fell by 59%, to approximately 30,000 b/d in 2020.⁷² In 2019, before COVID-19, the Santa Maria

⁶⁹ CARB, various years. *Calculation of Crude Average Carbon Intensity Values;* California Air Resources Board: Sacramento, CA. *In* LCFS Crude Oil Life Cycle Assessment, Final California Crude Average Carbon Intensity Values. Accessed October 2021. https://ww2.arb.ca.gov/resources/documents/lcfs-crude-oil-life-cycle-assessment ⁷⁰ DOGGR, 2017. 2017 Report of California Oil and Gas Production Statistics; California Department of Conservation, Division of Oil, Gas, & Geothermal Resources: Sacramento, CA.

⁷¹ For example, based on evidence described in sections B.1.1 and B.1.2 herein, Chart 2 includes all onshore and State offshore fields identified by DOGGR (2017) in District 3, and OCS oilfields included in Chart 1 as noted above, and optimistically assumes that no other California refiner competes for access to their production. ⁷² Karras, 2021c.

facility was operating at only 26,700 b/d,⁷³ 45% below its 48,950 b/d capacity.⁷⁴ In 2020, as accessible crude fell by roughly another 2,000 b/d,⁷⁵ the SMF cut rate by another 1,000 b/d to 25,700 b/d,⁷⁶ fully 47% below its design capacity.⁷⁷

These data demonstrate that the *currently* accessible crude supply does not allow operation at historic rates—the baseline condition conclusion in the DEIR—and strongly suggest that further dwindling access to crude would further curtail, then shutter, the crude refinery.

The County should have disclosed and evaluated all of this data, but it did not. It should additionally have required Phillips 66 to disclose relevant correlative data – *i.e.*, to provide volumes of each crude refined at each facility. The County's failure to do any of that obscures the plain falsity of its conclusion that a refinery with steadily less access to crude will continue to refine at current levels indefinitely (DEIR at 3-37). The County has thus failed to inform the public that a set of conditions that the DEIR plainly states would end crude refining at the Refinery (DEIR at 5-3) are imminently about to materialize.

4. Production Declines in the SF Complex Reflect Larger National Trends

The likelihood that production levels will continue to decline in the SF Complex is underscored by current national trends in refinery economics. Both the Santa Mara facility and the Refinery are impacted by the overall increasingly poor profit margins of crude oil refining, which has led to the closure, or conversion to biofuels production, of numerous refineries in California and throughout the world. The COVID pandemic caused short-term volatility; but refinery profits across the nation have been declining since before the pandemic. Refineries are closing or converting to biofuel production in the United States and throughout the world, and there is significant doubt whether the economics of refining will improve post-pandemic. The International Energy Agency (IEA) reported in November 2020 that roughly a dozen refinery closures had been announced in the previous few months, with the bulk of the capacity closures – over 1 million b/d – happening in the United States. IEA stated in its monthly report, "There were capacity shutdowns planned for 2020-2021 prior to COVID-19, but the bulk of the new announcements reflect pessimism about refining economics in a world suffering from temporary demand collapse and structural refining overcapacity."

Structural factors that underly this trend, predating but accelerated by COVID-19, are especially pronounced in the U.S. at West Coast refineries. Growth reversed years ago in both the crude supply and the market demand that California refineries were first built to tap. Refiners statewide reacted by increasing production through increasing reliance on oil imports and export fuels markets. The sustainability problem with that path-dependent reaction was

⁷³ DEIR p. 3-21.

⁷⁴ SLOC, 2014.

⁷⁵ Karras, 2021c.

⁷⁶ DEIR p. 3-21.

⁷⁷ This very low SMF production rate in 2019 would have reduced SMF output to the RF and thus capacity to thin and enable the movement of viscous San Joaquin Valley crude through Line 400 to the RF. Among other things, that reduction in RF pipeline receipts during 2019 might help to explain the anomalously high RF marine vessel traffic in 2019 reported by the DEIR.

further revealed by COVID-19. From March 20, 2020, through January 15, 2021, fully onefourth of statewide refining production became unproductive assets as a side effect of the pandemic, which paused personal travel. Perhaps most dispositively, even during the recent temporary surge in statewide and West Coast demand for petroleum fuels, up to 305,000 barrels per calendar day of statewide refining capacity—far more than the total capacity of this Phillips refinery—remained idle.⁷⁸ Phillips 66 faces this statewide overcapacity problem, along with the rapid terminal decline of site-specific crude resources that its refining facilities were built for and remain uniquely dependent upon.

5. Conclusion Regarding the DEIR Baseline Analysis.

The DEIR acknowledges both that crude refining at Rodeo would be infeasible without the Santa Maria facility and pipeline connecting it to the Refinery (DEIR at 5-3), and that "throughput at the Santa Maria Site has declined over time ..." (p. 5-12). However, it fails to disclose the key facts driving the future of the Santa Maria facility and the Refinery described above. It then fails to draw the necessary conclusion from those facts, which is that Refinery production will be increasingly curtailed under status quo conditions; and to apply that conclusion to its selection of a baseline. The DEIR's passing statement that "declining production is not equivalent to closure" (DEIR 5-12) is meaningless and uninformative. The question is not whether those two things are "equivalent"; it is whether declining production undercuts the DEIR's assumption that production will continue at historic levels; and whether the decline signifies a likelihood of near-term closure that should have been disclosed and evaluated as part of determining an accurate baseline (as well as no project alternative).

An accurate baseline would be based on the reality that refining will not and cannot continue at 2019 levels, or anything close to them. The DEIR must be revised and recirculated with full information addressing this reality.

IV. THE DEIR FAILED TO CONSIDER THE UPSTREAM ENVIRONMENTAL IMPACTS OF FEEDSTOCKS

As the largest biofuel refinery in the world, the Project would by definition consume unprecedented volumes of feedstock – inevitably much of it consisting of agricultural food products such as soybean oil. Both the environmental analysis for the California 2017 Scoping Plan and the Low-Carbon Fuel Standard (LCFS) expected localities to analyze and mitigate the potentially destructive consequences of such food crop and food system-related biofuels. Yet remarkably, the DEIR is virtually devoid of any discussion of the environmental impact of this unavoidably massive upheaval in the nation's agricultural systems, with global implications.

Commenters' Scoping Comments provided the County with abundant information concerning the potential upstream environmental impact of the Project's proposed feedstocks, including through indirect land use changes.⁷⁹ The Scoping Comments offered reliable data that

⁷⁸ Karras, 2021c.

⁷⁹Scoping Comments, pp. 10.

indicates severe shortages in non-food crop sources such as waste oil and animal fats will necessarily require the Project to make use of large amounts of food crop oils, most notably soybean oil.⁸⁰ Commenters pointed to studies that have documented the unintended economic, environmental, and climate consequences of using fungible feedstock to produce biofuels. Although the environmental and climate impacts of each may vary in biofuel production, food crop oils share a basic chemical structure that allows them to be used interchangeably or substituted for each other in the market—a characteristic called fungibility. Most notably, Commenters documented the massive spike in demand for biofuel feedstocks that will be induced by the Project.⁸¹

The DEIR effectively disregards all this information. None of the extensive scientific research and data provided by Commenters concerning the potential upstream impact of food crop feedstocks is even referenced, much less considered.

Ultimately, the DEIR concludes, without any analysis resembling an evaluation of either displacement or induced land use changes, that the Project will have no impact on agricultural or forestry resources. DEIR at 4-1. It improperly narrows the geographic scope to "entirely within the developed areas of the Rodeo Site, Carbon Plant, and the Santa Maria Site." *Id.* As a result, the DEIR's very limited discussion and conclusions concerning upstream environmental impacts suffers from the following deficiencies, addressed at greater length in the sections below:

- *Misplaced reliance on the LCFS.* Implicitly, the DEIR appears to justify rejecting the Scoping Comments' concerns about the inducement land use changes based on the existence of the State's Low Carbon Fuel Standard (LCFS), which draws on an analysis of upstream impacts. DEIR at 4.6-212, 4.8-266, 4.8-284. That reliance is entirely misplaced.
- *Failure to fully describe feedstocks and their limited availability.* The DEIR fails to fully identify and analyze all potential feedstock the Project will be capable of processing. It merely states what feedstocks the Project's slate is "anticipated", DEIR at 3-25-27; *see* Section II), without describing the factors that will determine the feedstock slate. The DEIR makes a sweeping comment that feedstock combinations cannot be predicted with "any degree of certainty," but data collected for over a decade indicates otherwise. The analysis makes no reference to this exemplary data presented in the Scoping Comments concerning the limited availability of biofuel feedstocks, particularly for waste oils and animal fats, and the impact of that limited availability on the likely feedstock mix for the Project.⁸²
- Failure to address impact of feedstock fungibility with an indirect land use change (ILUC) and displacement analysis. The DEIR does include a discussion of the fungibility of feedstock commodities, DEIR 3-27, but fails to follow through with the corresponding ILUC and displacement analyses that would allow the County to assess the environmental and climate impacts of ILUC and displacement changes.
- *Failure to address the magnitude of feedstock demand increase.* The Scoping Comments set forth the large percentage increase in demand for food system-related feedstocks of

⁸⁰ Scoping Comments, pp. 12-14.

⁸¹ Scoping Comments, pp. 13.

⁸² Id.

the type proposed to be used for the Project. These enormous spikes receive no mention in the DEIR.

- Failure to address environmental impacts from land use changes caused by feedstock demand increases. There is now broad consensus that increased demand for food crop oil biofuel feedstock has induced land use changes with significant negative environmental and climate consequences. Of particularly great concern are the studies that document a link between increased demand for SBO to a dangerous increase in palm oil production.
- Failure to meaningfully address mitigation of upstream environmental impacts. Meaningful mitigation measures, not addressed in the DEIR, would include limiting use of the most harmful types of feedstocks and those likely to induce increased production of such feedstocks. It is likely that the County would need to limit at least two of the feedstock identified in the DEIR—SBO and DCO—as a mitigation measure.

A. Previous LCFS Program-Level CEQA Analysis Does Not Exempt the County from Analyzing Impacts Analysis of Project-Induced Land Use Changes and Mitigating Them

The DEIR includes numerous references to the California Low Carbon Fuel Standard (LCFS) crediting system. To the extent the County may take the position that any land use impacts have already been addressed in the environmental analyses to adopt and amend the LCFS, that position is unsupportable.⁸³ While CARB may have evaluated, considered, and hoped to mitigate greenhouse gas emissions from the transportation sector in the design of the LCFS, its land use change modeling was one factor in the quantification of carbon intensity (CI) and associated credits generated for an incremental unit of fuel. It does not purport to assess the impact of an *individual project*, which produces a specific volume of such fuel using a knowable array of feedstocks. That is the County's job in this CEQA review.

The LCFS analysis is not a substitute for CEQA because it does not establish or otherwise imply a significance threshold under CEQA Guidelines § 15064.7. The LCFS is a "scoring system" in that the quantity of LCFS credits available for each barrel of fuel produced is based on the fuel's "score"—its carbon intensity (CI). The DEIR uses broad language to describe how the LCFS considers the "complete life cycle" of a fuel. DEIR at 4.8-251. But the details matter. The LCFS calculates the *incremental* CI per barrel of production of covered fuels by incorporating multiple sources of associated carbon emissions, including those associated with feedstock-based land use changes. The LCFS uses the Global Trade Analysis Project (GTAP), which is mentioned in the DEIR, to incorporate the incremental carbon impact of feedstock-induced indirect land use changes (ILUC) in its incremental CI scoring system. CARB uses GTAP to estimate the amounts and types of land worldwide that are converted to agricultural production to meet fuel demand.⁸⁴ DEIR 3.8-13. A closer reading of a key CARB

⁸³ DEIR 4.8-251, 4.8-3.

⁸⁴ In 2010, the LCFS ILUC analysis updated to using GTAP-BIO, which was designed to project the specific effects of one carefully defined policy change —namely the increased production of a biofuel. The methodology behind the change is detailed in Prabhu, A. Staff Report: Calculating Carbon Intensity Values from Indirect Land Use Change of Crop-Based Biofuels, California Environmental Protection Agency & Air Resources Board, 2015; Appendix I-6, 1-7, I-19. <u>https://ww2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/peerreview/050515staffreport_iluc.pdf</u> (accessed Dec 8, 2021)[hereinafter CARB 2015 LCFS Staff Report ILUC]; *see also Appendix I: Detailed Analysis*

staff report on the LCFS ILUC analysis makes clear, "The GTAP-BIO analysis was designed to isolate the *incremental* contribution... GTAP-BIO projections are *incremental* and *relative*" (emphasis added).⁸⁵ The ILUC emission factors in the LCFS are calculated by averaging 30 GTAP scenarios with different input parameters per incremental unit increase in fuel demand,⁸⁶ disaggregating the land use change estimates by world region and agro^{87 88} This incremental adjustment of CI values is useful for augmenting incremental units of biofuel production based on carbon emissions from associated land use changes, but no more.

As a marginal tool, the LCFS ILUC modeling does not set or have a threshold that could distinguish between significant and insignificant impacts under CEQA. The LCFS can determine the incremental CI of one barrel per day of biofuel production, but it says nothing about what happens when an individual project produces a finite amount of fuel. As a result, the LCFS cannot tell you if 80,000 b/d of additional biofuel feedstock consumption —and its associated environmental and climate impacts—is a little or a lot, insignificant or significant.

Indeed, the 2018 LCFS Final EA indicates that state regulators did not intend for the LCFS to be a replacement for CEQA review of individual projects. The 2018 LCFS Final EA explicitly explains that the environmental review conducted was only for the LCFS program not for individual projects. It repeatedly states, "the programmatic level of analysis associated with this EA does not attempt to address project-specific details of mitigation..."⁸⁹ and defers to local agencies like the County who have the "authority to determine project-level impacts and require project-level mitigation...for individual projects."⁹⁰ The County not only has the authority, but also the duty to determine project-level land use impacts and require project-level mitigation.

Finally, the LCFS only addresses carbon emissions, as it is designed to assign a CI score to fuels. It thus does *not* address non-carbon impacts associated with land use change. These impacts, as discussed further below, can be ecologically devastating. LCFS CI calculations are not designed to capture the full range of impacts associated with deforestation and other land use changes that may be wrought by increased production of biofuel feedstock crops.⁹¹ Following the guidance of the 2018 LCFS Final EA, it is up to a project-specific DEIR to analyze the

for Indirect Land Use Change in Low Carbon Fuel Standard Regulation Staff Report: Initial Statement of Reasons for Proposed Rulemaking, California Air Resources Board, Jan 2015, I-1,

https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2015/lcfs2015/lcfs15appi.pdf (accessed Dec 8, 2021) [hereinafter CARB 2015 LCFS Staff Report ILUC Appendix].

⁸⁵ CARB 2015 LCFS Staff Report ILUC Appendix I-20.

⁸⁶ CARB 2015 LCFS Staff Report ILUC Appendix I-8, I-16.

⁸⁷ CARB 2015 LCFS Staff Report ILUC Appendix I-13.

⁸⁸ CARB 2015 LCFS Staff Report ILUC Appendix Attachment 3-1.

⁸⁹ CARB analyzed the Conversion of Agricultural and Forest Resources Related to New Facilities, Agricultural and Forest Resource Impacts Related to Feedstock Cultivation and Long-Term Operational Impacts Related to Feedstock Production. *See* Final Environmental Analysis Prepared For The Proposed Amendments To The Low Carbon Fuel Standard And The Alternative Diesel Fuels Regulation, California Air Resources Board: Sacramento, CA, 2018; <u>https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2018/lcfs18/finalea.pdf</u> (accessed Dec 8, 2021) (hereinafter CARB 2018 LCFS Final EA).

⁹⁰ Id. ⁹¹ Id.

agricultural, forest, soil and water impacts related to land use changes because this analysis is specific to the geographic source of the feedstock crops.

In sum, the County cannot rely on the LCFS as a basis to abdicate its duty to disclose, analyze, and mitigate Project-induced land use changes in the DEIR. That the LCFS passed through program-level environmental review does not exempt any and all individual fuel production projects from CEQA review simply because they might qualify for LCFS subsidies. It is imperative that the DEIR evaluate all effects of use of potential food-grade feedstocks on upstream land use and agricultural systems, and the environmental impacts associated with those effects.

B. The DEIR Should Have Specified That the Project Will Rely Largely on Non-Waste Food System Oils, Primarily Soybean Oil ⁹²

The Project would convert existing crude oil refining equipment for use in HEFA refining. DEIR at 3.9 *et seq*.⁹³ The only HEFA feedstocks available in commercially relevant amounts for biofuel refining are from land-based food systems.⁹⁴ These include the ones listed in the DEIR: "used cooking oil (UCO); fat, oil and grease (FOG); tallow (animal fat); inedible corn oil (also known as distillers corn oil or DCO); soybean oil (SBO); canola oil; other vegetable-based oils and/or emerging and other next-generation feedstock." DEIR at 3.82. However, as noted above in the previous subsection, the DEIR reflects no commitment to use these in any particular proportion.

The law requires more. Even to the extent Phillips 66 is unable to specify the exact amount of each feedstock that will be used in the Project year to year, the County should have evaluated a "reasonable worst case scenario" for feedstock consumption and its impacts. *See Planning and Conservation League v. Castaic Lake Water Agency* (2009), 180 Cal.App.4th 210, 252; *Sierra Club v. Tahoe Regional Planning Agency*, 916 F.Supp.2d 1098, 1151-52 (E.D.Cal. 2013). While the County was not required to address entirely speculative worst case scenarios, neither may it use the mere existence of uncertainty as justification to avoid addressing any feedstock-varying scenarios at all. *Id.* Neither is analysis *only* of the reasonable worst case scenario, in order to provide full disclosure. *City of Long Beach v. City of Los Angeles* (2018), 19 Cal.App.5th 465, 487-88.

⁹² Portner, H.O. et al., Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change, IPBES Secretariat, June 2021, 18-19, 28-29, 53-58. <u>https://www.ipbes.net/events/launch-ipbes-ipcc-co-sponsored-workshop-report-biodiversity-and-climate-change (accessed Dec 8, 2021)</u>.

⁹³ Although as discussed in Section II, the DEIR never specifically mentions HEFA, the description generally references that technology, *i.e.*, briefly noting that the process feeds lipids, and more specifically, lipids from triacylglycerols (TAGs), and fatty acids cleaved from those TAGs, from biomass into the refinery.

⁹⁴ While fish oils are commercially available, they are extremely limited in availability. Food and Agriculture Organization of the United Nations (FAO), *The State of World Fisheries and Aquaculture: Sustainability in action*, 2020. <u>http://www.fao.org/documents/card/en/c/ca9229en</u> (accessed Dec 12, 2021); *see also* Yusuff, A., Adeniyi, O., Olutoye M., and Akpan, U. *Waste Frying Oil as a Feedstock for Biodiesel Production*, IntechOpen, 2018. <u>http://dx.doi.org/10.5772/intechopen.79433 (accessed Dec 8, 2021)</u>.

Whether the list is exclusive or not, appropriate DEIR impact analysis should reflect historic, current, and projected feedstock availability that will influence the proportional selection of feedstocks as demand for feedstock increases. While the DEIR acknowledges that market forces will also influence the selection of feedstocks, DEIR at 3-27, the County cannot ignore this readily available information about feedstock availability. Under CEQA, the County must still identify analyze the significance of the foreseeable feedstock mix scenarios—including a reasonable worst case scenario—accordingly.

Had it done so, the County would have determined that the very large majority of the feedstock the Project will use will almost certainly come from food crop and food system oilspredominantly SBO but also potentially others like DCO --with very little coming from waste oils such as tallow. One indicator for the likely predominant role of SBO and other food crop oils for the Project is the current breakdown of feedstock demand for biodiesel (another lipid-based biofuel) production.⁹⁵ From 2018 to 2020, 59% of biodiesel in the United States was produced from SBO as feedstock, compared to 11% from yellow grease, 14% from DCO, and only 3% from tallow, or rendered beef fat.⁹⁶ Another indicator is the limited domestic *supply* of alternative feedstock sources. Tallow and other waste oil volumes have come nowhere near meeting current biodiesel feedstock demand, with little prospect of expanding soon.⁹⁷ The future possible supply for these wastes is substantially constrained by the industries that produce them, and as such are generally nonresponsive to increased levels of demand. As a result, supplies will likely only increase at the natural pace of the industries that produce them.⁹⁸ Thus, a large fraction of feedstock likely to be used for the Project will be food crop oils - both purpose-grown food crop oils, such as SBO, canola, rapeseed, and cottonseed oils; and oils currently used in the food system, such as DCO.

C. The Project's Use of Feedstocks From Purpose-Grown Crops For Biofuel Production Is Linked to Upstream Land Use Conversion

There is now broad consensus in the scientific literature that increased demand for food crop oil biofuel feedstock has induced or indirect land use changes (ILUC) with significant negative environmental and climate consequences.⁹⁹ ILUC is already widely considered in

⁹⁵ See Zhou, Y; Baldino, C; Searle, S. *Potential biomass-based diesel production in the United States by 2032*. Working Paper 2020-04. International Council on Clean Transportation, Feb. 2020, <u>https://theicct.org/sites/default/files/publications/Potential_Biomass-Based_Diesel_US_02282020.pdf</u> (accessed Dec

^{8, 2021).}

⁹⁶ Uses data from EIA Biodiesel Production Report, Table 3. Feedstock breakdown by fat and oil source based on all data from Jan. 2018–Dec. 2020 from this table. U.S. Energy Information Administration (EIA), Monthly Biodiesel Production Report Table 3, Feb. 26, 2021, <u>https://www.eia.gov/biofuels/biodiesel/production/table3.pdf</u> (accessed Dec. 14, 2021). Data were converted from mass to volume based on a specific gravity relative to water of 0.914 (canola oil), 0.916 (soybean oil), 0.916 (corn oil), 0.90 (tallow), 0.96 (white grease), 0.84 (poultry fat), and 0.91 (used cooking oil). *See also* Zhou, Baldino, and Searle, 2020-04.

⁹⁷ See Baldino, C; Searle, S; Zhou, Y, *Alternative uses and substitutes for wastes, residues, and byproducts used in fuel production in the United States*, Working Paper 2020-25, International Council on Clean Transportation, Oct. 2020, <u>https://theicct.org/sites/default/files/publications/Alternative-wastes-biofuels-oct2020.pdf</u> (accessed Dec 8, 2021).

⁹⁸ See Zhou, Baldino, and Searle, 2020-04.

⁹⁹ See Portner et al., 2021.; see also Searchinger, T. et al., Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change. Science, 2008, 319, 1238,

policies to evaluate the environmental benefits of biofuels relative to fossil fuel counterparts, including the California Low-Carbon Fuel Standard, Renewable Fuel Standard (RFS),¹⁰⁰ EU Renewable Energy Directive (RED) and RED II,¹⁰¹ and ICAO CORSIA¹⁰². After a decade of studies, soybean oil will likely be designated a high-ILUC risk biofuel that will be phased out of European Union renewable energy targets by 2030.¹⁰³ Belgium has already banned soybean oil-based biofuels as of 2022.¹⁰⁴

HEFA biofuels can result in ILUC in several ways. One way is through the additional lands converted for crop production as feedstock demand for that crop increases. In simple economic terms, increased HEFA biofuel production requires increased feedstock crops, resulting in increased prices for that feedstock crop. The price increases then cause farmers of existing cultivated agricultural land to devote more of such land to that crop as it becomes more lucrative,¹⁰⁵ and are incentivized to clear new land to meet increased demand.¹⁰⁶¹⁰⁷

A second way that HEFA biofuels can cause ILUC, most relevant for the feedstocks proposed for the Project, is through displacement and substitution of commodities, leading to the conversion of land use for crops other than that of the feedstock demanded. As mentioned above, oil crops are to a great degree fungible—they are, essentially, interchangeable lipid, triacylglycerol (TAG) or fatty acid inputs to products. Due to their fungibility, their prices are

¹⁰⁴ Belgium to ban palm- and soy-based biofuels from 2022. Argus Media, Apr. 14, 2021.

https://science.sciencemag.org/content/319/5867/1238 (accessed Dec 8, 2021) (This landmark article notes one of the earliest indications that certain biofuel feedstock are counterproductive as climate measures.)

¹⁰⁰ O'Malley, J. U.S. *biofuels policy: Let's not be fit for failure*, International Council on Clean Transportation, Oct. 2021, <u>https://theicct.org/blog/staff/us-biofuels-policy-RFS-oct21</u> (accessed Dec 11, 2021).

¹⁰¹ Currently, the European Union is phasing out high ILUC fuels to course correct their biofuel policies based on nearly a decade of data. Adopted in 2019, Regulation (EU) 2019/807 phases out high ILUC-risk biofuels from towards their renewable energy source targets by 2030. ILUC – High and low ILUC-risk fuels, Technical Assistance to the European Commission. <u>https://iluc.guidehouse.com/</u> (accessed Dec 8, 2021).

¹⁰² International Civil Aviation Organization (ICAO), "CORSIA Supporting Documents: CORSIA Eligible Fuels – Life Cycle Assessment Methodology," 2019. https://www.icao.int/environmental-protection/CORSIA/Documents/ CORSIA%20Supporting%20Document_CORSIA%20Eligible%20Fuels_LCA%20Methodology.pdf (accessed Dec 11, 2021).

¹⁰³ Malins, C. *Risk Management: Identifying high and low ILUC-risk biofuels under the recast Renewable Energy Directive*; Cerulogy, 2019; 4, 14. http://www.cerulogy.com/wp-content/uploads/2019/01/Cerulogy_Risk-Management_Jan2019.pdf (accessed Dec 8, 2021).

https://www.argusmedia.com/en/news/2205046-belgium-to-ban-palm-and-soybased-biofuels-from-2022 (accessed Dec 8, 2021).

¹⁰⁵ See Appendix I: Detailed Analysis for Indirect Land Use Change in Low Carbon Fuel Standard Regulation Staff Report: Initial Statement of Reasons for Proposed Rulemaking, California Air Resources Board, Jan 2015, I-1, <u>https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2015/lcfs15appi.pdf</u> (accessed Dec 8, 2021) (hereinafter CARB 2015 LCFS Staff Report ILUC Appendix).

^{ì06} Id.

¹⁰⁷ Lenfert et al., *ZEF Policy Brief No. 28;* Center for Development Research, University of Bonn, 2017. <u>www.zef.de/fileadmin/user_upload/Policy_brief_28_en.pdf;</u> Gatti, L.V., Basso, L.S., Miller, J.B. et al. Amazonia as a carbon source linked to deforestation and climate change. *Nature* 595, 388–393 (2021).

https://doi.org/10.1038/s41586-021-03629-6 (accessed Dec 8, 2021); Nepstad, D., and Shimada, J., *Soybeans in the Brazilian Amazon and the Case Study of the Brazilian Soy Moratorium,* International Bank for Reconstruction and Development / The World Bank, Washington, D.C., 2018 (accessed Dec 8, 2021); Rangaraju, S, 10 years of EU fuels policy increased EU's reliance on unsustainable biofuels, Transport & Environment, Jul 2021. https://www.transportenvironment.org/wp-content/uploads/2021/08/Biofuels-briefing-072021.pdf (accessed Dec 8, 2021); Rangaray, S, 10 years of EU fuels policy increased EU's reliance on unsustainable biofuels, Transport & Environment, Jul 2021.

significantly if not wholly linked: when the price of one crop increases, another cheaper crop will be produced in greater volumes to fill the gap as consumers substitute their use of the more expensive crop. This substitution effect is known as displacement.¹⁰⁸ Studies have extensively documented the linkage between rising prices for one biofuel feedstock oil crop and the expanding production of another substitute oil crop.¹⁰⁹ These effects have been demonstrated for at least three of feedstocks identified in the DEIR—SBO, DCO, and tallow – that are significantly likely to be used in the Project.

Soybean Oil (SBO): SBO accounts for only about a third of the total market value of whole soybeans, with the majority of the value in the soybean meal. As a result, SBO supply is only weakly responsive to its own price—meaning that as demand for soybean oil increases, domestic SBO supply is unlikely to increase substantially.¹¹⁰ However, the supply of *palm oil* does respond to SBO prices. Historical data show that SBO price increases lead to increased imports of palm oil, as domestic consumers substitute SBO with palm oil. .^{111 112} The price of SBO, which would be the predominant source of feedstock in this Project, is already skyrocketing, in part in connection with increased biofuel production.¹¹³ By proposing a Project that will heavily rely on SBO, the Project will exacerbate the trends of increasing palm oil production and use because of rising SBO prices because of feedstock fungibility.

DCO: Distiller's corn oil (DCO) is a co-product produced during ethanol production, alongside another co-product, distiller's grains with solubles (DGS).¹¹⁴ DCO can be extracted

content/uploads/2021/07/Cerulogy Thought-for-food September2017.pdf (accessed Dec 8, 2021).

¹⁰⁸ See generally Pavlenko, N. and Searle, S. Assessing the sustainability implications of alternative aviation fuels. Working Paper 2021-11. International Council on Clean Transportation, Mar 2021.

https://theicct.org/sites/default/files/publications/Alt-aviation-fuel-sustainability-mar2021.pdf (accessed Dec 8, 2021).

¹⁰⁹ See Malins, C. Thought for food: A review of the interaction between biofuel consumption and food markets, Transport & Environment, Sept 2017. <u>https://www.transportenvironment.org/wp-</u>

¹¹⁰ See Martin, J. 'Soybean freakonomics' in Everything You Ever Wanted to Know About Biodiesel (Charts and Graphs Included!) <u>Union of Concerned Scientists</u>, The Equation, Jun 22, 2016. <u>https://blog.ucsusa.org/jeremy-martin/all-about-biodiesel/ (accessed Dec 8, 2021)</u>.

¹¹¹ See Santeramo, F. and Searle, S. *Linking soy oil demand from the US Renewable Fuel Standard to palm oil expansion through an analysis on vegetable oil price elasticities*. Energy Policy 2018, 127, 19 https://www.sciencedirect.com/science/article/abs/pii/S0301421518307924 (accessed Dec 8, 2021).

¹¹² Searle, S. *How rapeseed and soy biodiesel drive oil palm expansion*, The International Council on Clean Transportation, Jul 2017. <u>https://theicct.org/publications/how-rapeseed-and-soy-biodiesel-drive-oil-palm-expansion</u> (accessed Dec 8, 2021).

¹¹³ See Walljasper, C. GRAINS–Soybeans extend gains for fourth session on veg oil rally; corn mixed. *Reuters*, Mar 24 2021. <u>https://www.reuters.com/article/global-grains-idUSL1N2LM2O8 (accessed Dec 8, 2021).</u>

¹¹⁴ Malins, C., Searle, S., and Baral, A., *A Guide for the Perplexed to the Indirect Effects of Biofuels Production*, International Council on Clean Transportation 2014, 80 ("Co-products can be broadly placed into two categories: those that directly displace land-based products and have land use implications, such as distillers grains with solubles (DGS) displacing soybean meal, and those that displace non-land-based products such as urea, glycerol, and electricity. Co-products in the second category do not have land use implications but have greenhouse gas (GHG) reduction implications."). <u>https://theicct.org/sites/default/files/publications/ICCT_A-Guide-for-the-</u> Perplexed Sept2014.pdf (accessed Dec 8, 2021).

from distiller's grains with solubles (DGS), leading to substitution effects between the two commodities.¹¹⁵ DGS is a valuable agricultural residue commonly used in animal feed. In response to recently increasing biofuel feedstock demand, ethanol producers have been increasingly extracting DCO from DGS.¹¹⁶ Yet extracting DCO from DGS feed also removes valuable nutrients, requiring farmers to add even more vegetable oils or grains to replace the lost calories in their livestock feed.¹¹⁷ In practice, the most economical, and common source for these replacement nutrients has been more DCO, or DGS containing DCO, both of which then require additional corn crops.¹¹⁸ Thus, while DCO is not an oil from purpose-grown crops, any increase in DCO demand for Project biofuel production will ultimately increase food corn crop demand.¹¹⁹

Tallow: Tallow represents a small portion of the total value of cattle, less than 3%, and as a result, increased demand for tallow will only result in marginal increases in tallow supply, even with substantial price increases.¹²⁰ Like several other animal fats and DCO, tallow is not truly a waste fat, because it has existing uses. Tallow is currently used for livestock feed; pet food, for which it has no substitute; and predominantly, the production of oleochemicals like wax candles, soaps, and cosmetics.¹²¹ As a result, the dominant impact of increased tallow demand is through diversion of existing uses. Therefore, increased tallow production will likely yield increased palm oil and corn oil production.¹²²

D. The Scale of This Project Would Lead to Significant Domestic and Global Land Use Conversions

As shown above, all of the feedstocks demanded by the Project would lead to either direct or indirect increases in crops, such as soy, oil palm, and corn, which will require land use conversion. These potential land use impacts are of particular concern with respect to a project of the magnitude proposed by Phillips 66, given its potential to significantly disrupt food crop agricultural patterns.

¹¹⁵ *Id.* at 79.

¹¹⁶ Searle, S. *If we use livestock feed for biofuels, what will the cows eat?* The International Council on Clean Transportation, Jan. 2019. <u>https://theicct.org/blog/staff/if-we-use-livestock-feed-biofuels-what-will-cows-eat</u> (accessed Dec 8, 2021).

¹¹⁷ See Final Rulemaking for Grain Sorghum Oil Pathways. 81 Fed. Reg. 37740-37742 (August 2, 2018), https://www.govinfo.gov/content/pkg/FR-2018-08-02/pdf/2018-16246.pdf (accessed Dec 8, 2021); see also EPA sets a first in accurately accounting for GHG emissions from waste biofuel feedstocks, International Council on Clean Transportation Blog (Sept. 2018), https://theicct.org/blog/staff/epa-account-ghg-emissions-from-waste (accessed Dec 8, 2021).

¹¹⁸ Searle 2019.

¹¹⁹ Gerber, P.J. et al., *Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities*, Food and Agriculture Organization of the United Nations 2013, 8. https://www.fao.org/3/i3437e/i3437e.pdf (accessed Dec 8, 2021).

¹²⁰ Pavlenko, N. and Searle, S. *A comparison of methodologies for estimating displacement emissions from waste, residue, and by-product biofuel feedstocks*, Working Paper 2020-22, International Council on Clean Transportation, Oct 2020, 6. <u>https://theicct.org/sites/default/files/publications/Biofuels-displacement-emissions-oct2020.pdf</u> (accessed Dec 8, 2021).

¹²¹ Baldino, Searle, and Zhou, 2020-25, pp. 6.

¹²² Pavlenko and Searle 2020-22, pp. 26.

The DEIR failed to address the significant impact of the Project's demand for food crop feedstocks on agricultural markets, and hence on land use. The volume of food crop oil feedstock, namely SBO, likely to be required for the Project represents a disproportionately large share of current markets for such feedstock.¹²³ The anticipated heavy spike in demand for food crop oils associated with the Project (not to mention the cumulative spike when considered together with other HEFA projects such as the Marathon Martinez Refinery, *see* Section IX) will have significant environmental impacts, as discussed in the next subsection.

To assess the significance the Project's anticipated feedstock use, the County could and should have analyzed the Project's proposal to consume up to 80,000 b/d of lipid feedstocks¹²⁴ in the context of both total biofuel demand and total agricultural production data. With respect to biofuel demand, data from the U.S. Energy Information Administration on total biodiesel production in the United States indicates that oil crop and animal fat demand associated with U.S. biodiesel production on average totaled approximately 113,000 barrels per day (b/d) for the time period 2018-2020.¹²⁵ The Project would increase this nationwide total by a full 71 percent.¹²⁶

With respect to total production, US agricultural yield of the types of oil crops and animal fats that are potentially usable as Project feedstocks was roughly 372,000 b/d on average.¹²⁷ Thus, the Project alone would consume approximately a 22 percent share¹²⁸ of current total US production of lipid feedstocks. With that increase from the Project in place, U.S. biofuel feedstock demand could claim as much as 52 percent of total U.S. farm yield for *all* uses of these

 ¹²³ See Karras, G. Biofuels: Burning Food?, Community Energy resource, 2021. <u>https://f61992b4-44f8-48d5-9b9d-aed50019f19b.filesusr.com/ugd/bd8505_a077b74c902c4c4888c81dbd9e8fa933.pdf (accessed Dec 8, 2021).</u>
 ¹²⁴ DEIR xxii.

¹²⁵ Uses EIA data from the Monthly Biodiesel Production Report, Table 3. This 113,000 b/d estimate is based on all data from Jan. 2018–Dec. 2020 from this table. U.S. Energy Information Administration (EIA), Monthly Biodiesel Production Report Table 3, Feb. 26, 2021, https://www.eia.gov/biofuels/biodiesel/production/table3.pdf (accessed Dec. 14, 2021). Data were converted from mass to volume based on a specific gravity relative to water of 0.914 (canola oil), 0.916 (soybean oil), 0.916 (corn oil), 0.90 (tallow), 0.96 (white grease), 0.84 (poultry fat), and 0.91 (used cooking oil).

¹²⁶ DEIR xxii . The Project percentage boost over existing biofuel feedstock consumption is from 80,000 b/d, divided by that 113,000 b/d from existing biodiesel production.

¹²⁷ This 372,000 b/d estimate is from two sources. First, data were taken from the U.S. Department of Agriculture (USDA) "Oil Crops Data: Yearbook Tables" data. U.S. Department of Agriculture (USDA), Oil Crops Yearbook Tables 5, 26, and 33, Mar. 26, 2021, <u>https://www.ers.usda.gov/data-products/oil-crops-yearbook/</u> (accessed Dec. 14, 2021). Specifically, from Oct. 2016 through Sep. 2020 average total U.S. yields were: 65.1 million pounds per day (MM lb/d), or 202,672 b/d at a specific gravity (SG) of 0.916 for soybean oil (*see* i below), 4.62 MM lb/d or 14,425 b/d at 0.915 SG for canola oil (ii), and 15.8 MM lb/d or 49,201 b/d at 0.923 SG for corn oil (iii).. *See* USDA Oil Crops Yearbook (OCY) data tables (i) OCY Table 5, (ii) OCY Table 26, (iii) OCY Table 33, (iv) OCY Table 20), (v) OCY Table 32. Second, we estimated total U.S. production of other animal fats and waste oils from the U.S. Department of Agriculture (USDA) "Fats and Oils: Oilseed Crushings, Production, Consumption and Stocks" Annual Summaries. National Agricultural Statistics Service, "Fats and Oils: Oilseed Crushings, Production, Consumption and Stocks Annual Summary", 2017 through 2020,

https://usda.library.cornell.edu/concern/publications/mp48sc77c. (accessed Dec. 14, 2021). Specifically, from 2017 to 2020, average total U.S. yields were: 16.2 MM lb/d or 51,386 b/d for edible, inedible, and technical tallow production, 6.65 MM lb/d or 22,573 b/d for poultry fat production, 4.52 MM lb/d or 13,420 b/d for lard and choice white grease production, and 5.83 MM lb/d or 18,272 b/d for yellow grease production.

¹²⁸ This figure represents Project feedstock demand of 80,000 b/d over the estimated 372,000 b/d total lipid production in the U.S. calculated in the previous footnote.

oils and fats. The Project alone would thus commit a disproportionate share of US food crop oils to California, with attendant potential climate consequences.¹²⁹

The projected impact of the Project on the SBO markets is particularly notable. Existing biodiesel production uses approximately 66,000 b/d of SBO out of the total 203,000 b/d of SBO produced domestically for all uses.¹³⁰ As a result, the Project alone could use up to 39 percent of total domestic SBO production. This would constitute a rapid increase in domestic SBO consumption, which would dramatically outpace the recent year-on-year increases in domestic SBO production, ranging from 1-7%. This in turn would lead to rapid price spikes and substitution across the oil markets.

In order to assess the impacts of a "reasonable worst case" scenario, the County could, and should, have calculated the magnitude of the land use changes attributable to the anticipated feedstock mix. Had the County taken a closer look at the environmental assessment of the LCFS itself, it could have readily used the same analysis conducted by CARB for the LCFS, as previously discussed in subsection A in order to quantify the upstream land use impacts of the Project's use of SBO feedstock. For example, under a hypothetical "shock" increase of 0.812 billion gallons per year of soy biodiesel, the GTAP-BIO model identified an average of over 2 million acres of forest, pasture, and cropland-pasture land would be converted to cropland. The majority of this land use change would be overseas, with 1.2 million acres of the converted land use outside of the U.S.¹³¹ While land use impacts will not necessarily be linear with the feedstock demand increases, this finding can be extrapolated to estimate the land use converted as a result of the Project. This finding, if scaled to the 1.23 billion gallons of feedstock consumed by the Project and if 100% of that feedstock was SBO, would mean 3.0 million acres of land would need to be converted for this Project.

https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-yearbook/#All%20Tables.xlsx?v=7477.4 (accessed Dec 12, 2021); U.S. Energy Information Administration (EIA). Monthly Biodiesel Production Report, Table 3. Inputs to biodiesel production; www.eia.gov/biofuels/biodiesel/production/table3.xls (accessed Dec 12, 2021). Soybean oil consumed for biodiesel production is an average of 2018 through 2020 data, while total U.S. production is an average from Oct. 2016 through Sept. 2020. ¹³¹ 2018 CARB LCFS Staff Report Appendix I-8, I-29, I-30.

¹²⁹ Importing biofuel feedstock from another state or nation which is needed there to help decarbonize its economy could make overreliance on biofuels to help decarbonize California's economy counterproductive as a climate protection measure. Accordingly, expert advice commissioned by state agencies suggests limiting the role of biofuels within the state's decarbonization mix to the state's per capita share of low-carbon biofuel feedstocks. See Mahone et al. 2020 and 2018. On this basis, given California and U.S. populations of 39.5 and 330 million, respectively, California's total share of U.S. farm production (for all uses) of plant oils and animal fats which also are used for biofuels would be approximately 12%. As described in the note above, however, the Project could commit 22% of that total U.S. yield (for all uses) to biofuels produced at the Refinery alone. ¹³⁰ U.S. Department of Agriculture (USDA) "Oil Crops Data: Yearbook Tables." Table 5

E. Land Use Conversions Caused By the Project Will Have Significant Non-Climate Environmental Impacts

The land use changes incurred by increased use of feedstock supplies risk an array of environmental impacts related to habitats, human health, and indigenous populations.¹³² Conversion of more natural habitat to cropland is often accompanied by efforts to boost short-term yields by applying more fertilizers and pesticides, thereby destroying habitat needed to reverse biodiversity loss. Indeed, authoritative international bodies have warned explicitly about the potential future severity of these impacts.¹³³ One path for creating additional crop lands is by burning non-agricultural forests and grasslands. This destructive process not only releases sequestered carbon, but also causes non-carbon related environmental impacts due to use of nitrogen-based fertilizers and petroleum-derived pesticides on the newly cleared lands; and use petroleum-fueled machinery to cultivate and harvest feedstock crops from newly converted land to meet crop-based biofuel demand.¹³⁴

These non-climate environmental impacts were even identified by the 2018 LCFS Final EA as significant negative environmental impacts. CARB concluded that the agricultural, forest, and water resources related to land use changes related to feedstock cultivated would likely have significant negative effects, which are extraneous to the LCFS CI calculation. Adverse effects associated with the conversion or modification of natural land or existing agriculture include impacts on sensitive species populations; soil carbon content; annual carbon sequestration losses, depending on the land use; long-term erosion effects; adverse effects on local or regional water resources; and long-term water quality deterioration associated with intensified fertilizer use, pesticide or herbicide run-off; energy crops and short rotation forestry on marginal land, and intensive forest harvest could both have long-term effects on hydrology; agricultural activities may cause pollution from poorly located or managed animal feeding operations; pollutants that result from farming and ranching may include sediment, nutrients, pathogens, pesticides, metals, and salts; increased use of pesticides could increase greenhouse gas emissions.¹³⁵

The expansion of palm oil production, due to SBO consumption as described above, will also have a particularly severe environmental impact.¹³⁶ The palm oil industry is a source of pollutants and greenhouse gas emissions in two ways: deforestation and the processing of palm

¹³² Malins, C., *Soy, land use change, and ILUC-risk: a review*, Cerulogy, 2020a, https://www.transportenvironment.org/wp-

content/uploads/2021/07/2020_11_Study_Cerulogy_soy_and_deforestation.pdf; Malins, C. *Biofuel to the fire – The impact of continued expansion of palm and soy oil demand through biofuel policy*. Report commissioned by Rainforest Foundation Norway, 2020b.

https://d5i6is0eze552.cloudfront.net/documents/RF_report_biofuel_0320_eng_SP.pdf (accessed Dec 8, 2021); Garr, R. and Karpf, S., BURNED: Deception, Deforestation and America's Biodiesel Policy, Action Aid USA, 2018. https://www.actionaidusa.org/publications/americas-biodiesel-policy/ (accessed Dec 8, 2021).

¹³³ IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES: Bonn, DE, 2019, pp. 12, 18, 28. https://ipbes.net/global-assessment (accessed Dec 8, 2021).

¹³⁴ CARB 2018 LCFS Final EA, pp. 120, 172-173.

¹³⁵ CARB 2018 LCFS Final EA, pp. 110 – 120.

¹³⁶ See Petrenko, C., Paltseva, J., and Searle, S. *Ecological Impacts of Palm Oil Expansion in Indonesia*, International Council on Clean Transportation, Jul 2016. <u>https://theicct.org/sites/default/files/publications/Indonesia-palm-oil-expansion_ICCT_july2016.pdf</u> (accessed Dec 8, 2021).

oil. Fires clearing the way for a palm oil plantation are a major source of air pollution that adversely affect human health; agrochemicals associated with palm oil plantations are dangerous for terrestrial and aquatic ecosystems.¹³⁷ Palm oil production also proliferates in highly productive biodiversity hotspots like Indonesia and the Brazilian Amazon, where massive deforestation and attendant species loss can dramatically affect both global biodiversity and the climate.¹³⁸

F. Land Use Conversions Caused by the Project Will Have Significant Climate Impacts

The County failed to address evidence that increased use of food crop or food system feedstocks like palm and soybean oil have resulted in net increases in greenhouse gas emissions. As noted above, while the LCFS takes into account climate impacts resulting from land use change in its CI calculations, those calculations are expressly not intended to substitute for project-level analysis of impacts.

As described in the previous subsection, when the increased consumption of palm and soybean oil results in the clearing of more land or deforestation to grow more of those crops, it leads to the counterproductive destruction of natural carbon sinks. This expansion of soy production not only results in carbon loss from the destruction of vegetation and upheaval of high carbon stock soil, but also the loss of future sequestration capabilities. Available analysis suggests that a significant fraction of cropland expansion in general, and soy expansion in particular, continues to occur at the expense of carbon-sequestering forests, especially in South America.¹³⁹ Greenhouse gas emissions induced by land use changes from increased demand for food crop or food system-based feedstock also occur in the United States. One recent study concluded "perhaps surprisingly—that despite the dominance of grassland conversion in the US, emissions from domestic [land use change] are greater than previously thought."¹⁴⁰ More than 90% of emissions from grassland conversions came from soil organic carbon stocks (SOC).¹⁴¹ Due to the longtime accumulation time of the SOCs, those emissions may be impossible to mitigate on a time scale relevant to humans.¹⁴²

Domestic and global climate impacts from land use changes are interconnected because the feedstock are tied to a global food system. For example, even if the feedstock source is domestic, the increase in soybean oil demand will result in increases in palm oil production expansion as described above—ultimately resulting in substantial increases in GHG emissions.¹⁴³ As a result, modeled soy-based biofuel net carbon emissions are, at best, virtually the same as fossil diesel, with even worse climate impacts for greater quantities of soy-based

¹³⁷ *Id.*, pp. 7-11.

¹³⁸ Id.

¹³⁹ Malins 2019, pp. 5.

¹⁴⁰ Spawn, S. et al. *Carbon emissions from cropland expansion in the United States* Environ. Res. Lett. 14 045009, 2019. <u>https://iopscience.iop.org/article/10.1088/1748-9326/ab0399</u> (accessed Dec 11, 2021).

¹⁴¹ Spawn 2019, pp. 5.

¹⁴² Spawn 2019, pp. 7, 9.

¹⁴³ Malins, C. Driving deforestation: The impact of expanding palm oil demand through biofuel policy, 2018. <u>http://www.cerulogy.com/wp-content/uploads/2018/02/Cerulogy_Driving-deforestation_Jan2018.pdf</u> (accessed Dec 12, 2021); see also Malins 2020, pp. 57; see generally Searle 2018.

biofuel produced.¹⁴⁴ These estimates suggest the DEIR has dramatically overstated the potential GHG benefits of the Project.

G. The County Should Have Taken Steps to Mitigate ILUC Associated with the Project by Capping Feedstock Use

The County should have considered a feedstock cap as a mitigation measure for land use impacts, but did not.¹⁴⁵ The one mitigating measure it did mention, best management practices (BMPs), has no meaningful application here.

Best Management Practices: BMPs for feedstock crops should have been considered and included as a mitigation measure. The 2018 LCFS EA indicates that CARB anticipated local governments like the County to use their land use authority to mitigate projects by requiring feedstock sources to be developed under Best Management Practices specific to the ecological needs of feedstock origins. In particular, CARB left localities with land use authority to consider BMPs to mitigate long-term effects on hydrology and water quality related to changes in land use and long-term operational impacts to geology and soil associated with land use changes. ¹⁴⁶

Feedstock Cap: To guard against the severe environmental impacts associated with the inevitably induced land use changes, the County should set capped feedstock volume, at a level that would prevent significant ILUC impacts. The DEIR should have considered both caps on individual feedstocks, and an overall cap on feedstock volume. Such limits would be based on an ILUC assessment of each potential feedstock and total combinations of feedstock. In particular, the County should take steps to ensure that California does not consume a disproportionate share of available feedstock, in exceedance of its per capita share, in accordance with the prudent assumptions in CARB's climate modeling.¹⁴⁷

V. THE DEIR FAILS TO ASSESS AND MITIGATE PROCESS SAFETY RISKS ASSOCIATED WITH RUNNING BIOFUEL FEEDSTOCKS¹⁴⁸

The Scoping Comments described how processing vegetable or animal-derived biofuel feedstocks in a hydrotreater or hydrocracker creates significant refinery-wide process hazards beyond those that attend crude oil refining. That information was disregarded and not addressed in the DEIR. It is essential that the DEIR address the process safety risks described in the subsections below, and evaluate their potential impact on human health.

¹⁴⁴ Malins 2020a, pp. 57.

¹⁴⁵ See e.g., Mitigation B.2.b: Agricultural and Forest Resource Impacts Related to Feedstock Cultivation; Mitigation Measure B.7.b Long-Term Operational Impacts to Geology and Soil Associated with Land Use Changes; Mitigation B.10.b: Long-Term Effects on Hydrology and Water Quality Related to Changes in Land Use, Mitigation B.11.b: Long-Term Operational Impacts on Land Use Related to Feedstock Production.

¹⁴⁶ See Mitigation Measure B.7.b Long-Term Operational Impacts to Geology and Soil Associated with Land Use Changes; Mitigation B.10.b: Long-Term Effects on Hydrology and Water Quality Related to Changes in Land Use.

¹⁴⁷ California Air Resources Board, PATHWAYS Biofuel Supply Module, Technical Documentation for Version 0.91 Beta, Jan 2017, pp. 9 https://ww2.arb.ca.gov/sites/default/files/classic/cc/scopingplan/bfsm tech doc.pdf.

¹⁴⁸ Supplemental information in support of this analysis is provided in Karras 2021c accompanying this comment, in the section entitled "The Deir Does Not Provide A Complete or Accurate Analysis of Process Hazards and Does Not Identify, Evaluate, or Mitigate Significant Potential Project Hazard Impacts."

A. The Project Could Worsen Process Hazards Related to Exothermic Hydrogen Reactions

Running biofuel feedstocks risks additional process safety hazards even beyond those associated with processing crude oil. This is because the extra hydrogen that must be added to convert the new biofuel feedstock to hydrocarbon fuels generates more heat in process reactions that occur under high pressure and are prone to runaway reactions. The reaction is exothermic: it generates heat. When it creates more heat, the reaction can feed on itself, creating more heat even faster.¹⁴⁹

The reason for the increased heat, and hence risk, is that the removal of oxygen from triacylglycerols of fatty acids in the biofuel feed, and saturating the carbon atoms in that feed to remove that oxygen without creating unwanted carbon byproducts that cannot be made into biodiesel and foul the process catalyst, require bonding that oxygen and carbon with a lot more hydrogen. The Project would use roughly nine times more hydrogen per barrel biorefinery feed than the average petroleum refinery needs from hydrogen plants per barrel crude.¹⁵⁰ Reacting more hydrogen over the catalyst in the hydrotreating or hydrocracking reactor generates more heat faster.¹⁵¹ This is a well-known hazard in petroleum processing, that manifests frequently in flaring hazards¹⁵² when the contents of high-pressure reactor vessels must be depressurized¹⁵³ to flares in order to avoid worse consequences that can and sometimes have included destruction of process catalyst or equipment, dumping gases to the air from pressure relief valves, fires and explosions. The extra hydrogen reactants in processing the new feedstocks increase these risks.¹⁵⁴

B. The Project could Worsen Process Hazards Related to Damage Mechanisms Such as Corrosion, Gumming, and Fouling

The severe processing environment created by the processing of new feedstocks for the Project also can be highly corrosive and prone to side reactions that gum or plug process flows, leading to frequent or even catastrophic equipment failures. Furthermore, depending on the

¹⁵¹ van Dyk et al., 2019. *Biofuels Bioproducts & Biorefining* 13: 760–775. <u>See p. 765 ("exothermic reaction, with heat release proportional to the consumption of hydrogen"). <u>https://onlinelibrary.wiley.com/doi/10.1002/bbb.1974</u>.
 ¹⁵² Flaring causal analyses, various dates. Reports required by Bay Area Air Quality Management District Regulation 12, Rule 12, including reports posted at <u>https://www.baaqmd.gov/about-air-quality/research-and-</u>
</u>

 ¹⁴⁹ Robinson and Dolbear, "Commercial Hydrotreating and Hydrocracking. *In* Hydroprocessing of heavy oils and residua," 2007. Ancheyta and Speight, eds. CRC Press, Taylor and Francis Group: Boca Raton, FL, pp. 308, 309.
 ¹⁵⁰ The Project could consume 2,220–3,020 standard cubic feet of H₂ per barrel of drop-in biodiesel feed processed. Karras, 2021a. *Changing Hydrocarbons Midstream* (Attached hereto). Operating data from U.S. petroleum refineries during 1999–2008 show that nationwide petroleum refinery usage of hydrogen production plant capacity averaged 272 cubic feet of H₂ per barrel crude processed. Karras, 2010. *Environ. Sci. Technol.* 44(24): 9584 and Supporting Information. (*See* data in Supporting Information Table S-1.) https://pubs.acs.org/doi/10.1021/es1019965.

data/flare-data/flare-causal-reports and reports for incidents predating those posted at that link.

¹⁵³ Chan, 2020. <u>www.burnsmcd.com/insightsnews/tech/converting-petroleum-refinery-for-renewable-diesel</u>. <u>See</u> p. 2 ("emergency depressurization" capacity required).

¹⁵⁴ van Dyk et al., 2019 as cited above at 765 ("heat release proportional to the consumption of hydrogen"); and Chan, 2020 as cited above at 2 ("significantly more exothermic than petroleum diesel desulfurization reactions").

contaminants and processing byproducts of the particular Project feedstock chosen, it could create new damage mechanism hazards or exacerbate existing hazards to a greater degree. As Chan notes:

Feedstock that is high in free fatty acids, for example, has the potential to create a corrosive environment. Another special consideration for renewable feedstocks is the potential for polymerization ... which causes gumming and fouling in the equipment ... hydrogen could make the equipment susceptible to high temperature hydrogen attack ... [and drop-in biodiesel process] reactions produce water and carbon dioxide in much larger quantities than petroleum hydrotreaters, creating potential carbonic acid corrosion concerns downstream of the reactor.¹⁵⁵

C. Significant Hazard Impacts Appear Likely Based on Both Site-Specific and Global Evidence

Site-specific evidence shows that despite current safeguards, hydrogen-related hazards frequently contributed to significant flaring incidents, even before the worsening of hydroconversion intensity and hydrogen-related process safety hazards which could result from the Project. Causal analysis reports for significant flaring from unplanned incidents indicate that at least 52 hydrogen-related process safety hazard incidents occurred at the Refinery from January 2010 until it closed on 28 April 2020.¹⁵⁶ This is a conservative estimate, since incidents can cause significant impacts without environmentally significant flaring, but still represents, on average, another hydrogen-related hazard incident at the Refinery every 70 days. Moreover, considering the Refinery and Marathon Martinez refinery flare data together, sudden unplanned or emergency shutdowns of major hydro-conversion or hydrogen production plants occurred in 84 of these reported incidents.¹⁵⁷ Such sudden forced shutdowns of *both* hydro-conversion and hydrogen production plants occurred in 22 of these incidents.¹⁵⁸ In other words, incidents escalated to refinery-level systems involving multiple plants frequently—a foreseeable consequence since both hydro-conversion and hydrogen production plants are susceptible to upset when the critical balance of hydrogen production supply and hydrogen demand between them is disrupted suddenly. In four of these incidents, consequences of underlying hazards included fires at the Refinery.159

Catastrophic consequences of hydrogen-related hazards are foreseeable based on industry-wide reports as well as site-specific evidence. For example:

¹⁵⁵ Chan, 2020 as cited above at 3.

¹⁵⁶ Flaring causal analyses, various dates. Reports required by Bay Area Air Quality Management District Regulation 12, Rule 12, including reports posted at <u>https://www.baaqmd.gov/about-air-quality/research-and-data/flare-data/flare-causal-reports</u> and reports for incidents predating those posted at that link.

 ¹⁵⁷ Flaring causal analyses as cited above. Hydro-conversion includes hydrotreating and hydrocracking.
 ¹⁵⁸ *Id.*

¹⁵⁹ Flaring causal analyses as cited above. <u>See</u> reports for incidents starting 13 May 2010, 17 February 2011 and 17 April 2015.

- Eight workers are injured and a nearby town is evacuated in a 2018 hydrotreater reactor rupture, explosion and fire;¹⁶⁰
- A worker is seriously injured in a 2017 hydrotreater fire that burns for two days and causes an estimated \$220 million in property damage;¹⁶¹
- A reactor hydrogen leak ignites in a 2017 hydrocracker fire that causes extensive damage to the main reactor;¹⁶²
- A 2015 hydrogen conduit explosion throws workers against a refinery structure;¹⁶³
- Fifteen workers die, and 180 others are injured, in a series of 2005 explosions when hydrocarbons flood a distillation tower during an isomerization unit restart;¹⁶⁴
- A vapor release from a valve bonnet failure in a high-pressure hydrocracker section ignites in a major 1999 explosion and fire at the Chevron Richmond refinery;¹⁶⁵
- A worker dies, 46 others are injured, and the surrounding community is forced to shelter in place when a release of hydrogen and hydrocarbons under high temperature and pressure ignites in a 1997 hydrocracker explosion and fire at the Tosco (now Marathon) Martinez refinery;¹⁶⁶
- A Los Angeles refinery hydrogen processing unit pipe rupture releases hydrogen and hydrocarbons that ignite in a 1992 explosion and fires that burn for three days;¹⁶⁷
- A high-pressure hydrogen line fails in a 1989 fire which buckles the seven-inch-thick steel of a hydrocracker reactor that falls on nearby Richmond refinery equipment;¹⁶⁸
- An undetected vessel overpressure causes a 1987 hydrocracker explosion and fire.¹⁶⁹

Since the Project's new feedstock and process system are thus known to worsen the underlying conditions that can become (and have become) root causes of hazardous incidents, the DEIR should have disclosed, thoroughly evaluated, and mitigated these risks. The DEIR should have analyzed, *inter alia*, the impact of the proposed new feedstock and production process on worker safety, community safety, and upset frequency and impacts (including increased flaring).

¹⁶⁰ Process Safety Integrity, *Refining incidents;* <u>https://processsafetyintegrity.com/incidents/industry/refining</u>; *see* Bayernoil Refinery Explosion, January 2018.

¹⁶¹ Process Safety Integrity as cited above; *see* Syncrude Fort McMurray Refinery Fire, March 2017.

¹⁶² Process Safety Integrity as cited above; *see* Sir Refinery Fire, January 2017.

¹⁶³ Process Safety Integrity as cited above; *see* Petrobras (RLAM) Explosion, January 2015.

¹⁶⁴ Process Safety Integrity as cited above; *see* BP Texas City Refinery Explosion, March 2005.

¹⁶⁵ Process Safety Integrity as cited above; *see* Chevron (Richmond) Refinery Explosion, March 1999.

¹⁶⁶ Process Safety Integrity as cited above; *see* Tosco Avon (Hydrocracker) Explosion, January 1997.

¹⁶⁷ Process Safety Integrity as cited above; *see* Carson Refinery Explosion, October 1992.

¹⁶⁸ Process Safety Integrity as cited above; <u>see</u> Chevron (Richmond) Refinery Fire, April 1989.

¹⁶⁹ Process Safety Integrity as cited above; <u>see</u> BP (Grangemouth) Hydrocracker Explosion, March 1987.

D. Process Operation Mitigation Measures Can Reduce but Not Eliminate Process Safety Hazard Impacts

There are procedures to control the reaction heat, pressure – including through process operation measures such as quenching between catalyst beds in the reactor and careful control of how hot the reactor components get, how much hydrogen is added, how much feed is added, and how long the materials remain in the reactor, preventing hot spots from forming inside of it, and intensive monitoring for equipment damage and catalyst fouling. These measures should have been considered in the DEIR as mitigation for process safety impacts, but were not.

However, such analysis would also need to account for the fact that these measures are imperfect at best, and rely on both detailed understanding of complex process chemistry and monitoring of conditions in multiple parts of the process environment. Both those conditions are difficult to attain in current petroleum processing, and even more difficult with new feedstocks with which there is less current knowledge about the complex reactions and how to monitor them when the operator cannot "see" into the reactor very well during actual operation; and cannot meet production objectives if production is repeatedly shut down in order to do so.

In fact, the measures described above are "procedural safeguards,"¹⁷⁰ the least effective type of safety measure in the "Hierarchy of Hazard Control"¹⁷¹ set forth in California process safety management policy for petroleum refineries.¹⁷² It would also in principle be possible to add automated shutdown control logic systems to these procedural safeguards before it closed the refinery, as Marathon proposes to do in its similar biofuel conversion, but these are "active safeguards,"¹⁷³ the next least effect type of safety measure in the Hierarchy of Hazard Control. Similarly, it would be possible to replace some of the vessel and piping linings of its old Refinery equipment, which would be repurposed for the Project, with more corrosion-resistant metallurgy—an added layer of protection in those parts of the biorefinery where this proposal might be implemented, and a tacit admission that potential hazards of processing its proposed feedstock are a real concern. This type of measure is a "passive safeguard,"¹⁷⁴ the next least effective type of measure in the Hierarchy of Hazard Control, after procedural and active safeguards. Both of these measures, and others like them, should have been considered; but their effectiveness is limited.

¹⁷⁰ Procedural safeguards are policies, operating procedures, training, administrative checks, emergency response and other management approaches used to prevent incidents or to minimize the effects of an incident. Examples include hot work procedures and emergency response procedures. California Code of Regulations (CCR) § 5189.1 (c).

¹⁷¹ This Hierarchy of Hazard Control ranks hazard prevention and control measures "from most effective to least effective [as:] First Order Inherent Safety, Second Order Inherent Safety, and passive, active and procedural protection layers." CCR § 5189.1 (c).

¹⁷² We note that to the extent this state policy, the County Industrial Safety Ordinance, or both may be deemed unenforceable with respect to biorefineries which do not process petroleum, that only further emphasizes the need for full analysis of Project hazard impacts and measures to lessen or avoid them in the DEIR.

¹⁷³ Active safeguards are controls, alarms, safety instrumented systems and mitigation systems that are used to detect and respond to deviations from normal process operations; for example, a pump that is shut off by a high-level switch. CCR § 5189.1 (c).

¹⁷⁴ See CCR § 5189.1 (c).

Importantly, and perhaps most telling, Phillips 66 proposes to repurpose and continue to use the flare system of its closed refinery for this Project. DEIR at 3-29. Rather than eliminating underlying causes of safety hazard incidents or otherwise preventing them, refinery flare systems are designed to be used in procedures that minimize the effects of such incidents.¹⁷⁵ This is a procedural safeguard, again the least effective type of safety measure.¹⁷⁶ The flares would partially mitigate incidents that, in fact, are expected to occur if the Project is implemented, but flaring itself causes acute exposure hazards. And as incidents caused by underlying hazards that have not been eliminated continue to recur, they can eventually escalate to result in catastrophic consequences. In essence, the Project description itself demonstrates the need to address process hazards that site-specific data show to be potentially significant and the DEIR fails to address.

E. The DEIR Should Have Evaluated the Potential for Deferred Mitigation of Process Hazards

The DEIR should have considered available means to address the Project design, and impose appropriate conditions and limitations, to mitigate process safety hazards. Examples of potential mitigation measures that should have been considered (in addition to the process measures referenced above of limited effectiveness) include the following:

- *Feedstock processing hazard condition*. The County could adopt a Project condition to forgo or minimize the use of particularly high process hydrogen demand feedstocks. Since increased process hydrogen demand would be a causal factor for the significant process hazard impacts and some HEFA feedstocks increase process hydrogen demand significantly more than other others, avoiding feedstocks with that more hazardous processing characteristic would lessen or avoid the hazard impact.
- *Product slate processing hazard condition.* The County could adopt a Project condition to forgo or minimize particularly high-process hydrogen demand product slates. Minimizing or avoiding HEFA refining to boost jet fuel yield, which significantly increases hydrogen demand, would thereby lessen or avoid further intensified hydrogen reaction hazard impacts.
- *Hydrogen input processing hazard condition.* The County could adopt a Project condition to limit hydrogen input per barrel, which could lessen or avoid the process hazard impacts from particularly high-process hydrogen demand feedstocks, product slates, or both.
- *Hydrogen backup storage processing hazard condition*. The County could adopt a Project condition to store hydrogen onsite for emergency backup use. This would lessen or avoid hydro-conversion plant incident impacts caused by the sudden loss of hydrogen inputs when hydrogen plants malfunction, a significant factor in escalating incidents.

Commenters are not necessarily recommending these particular measures. However, these and any other options for mitigating process hazards through design or other conditions should have been considered, and were not.

¹⁷⁵ See BAAQMD regulations, § 12-12-301. Bay Area Air Quality Management District: San Francisco, CA.

¹⁷⁶ See Procedural Measure and Hierarchy of Hazard Control definitions under CCR § 5189.1 (c) in the notes above.

VI. THE DEIR INADEQUATELY DISCLOSES AND ADDRESSES PROJECT GREENHOUSE GAS AND CLIMATE IMPACTS

The DEIR analysis of greenhouse gas (GHG) emissions and climate impacts suffers from the same baseline-related flaw as numerous other subjects in the document, *i.e.*, it determines emission impacts from a baseline of continuing crude oil production as opposed to actual current shutdown conditions. Based on the flaw alone, the DEIR analysis of GHG emissions impacts must be revised to incorporate the correct baseline.

However, even aside from this major flaw, the DEIR's analysis of GHG and climate impacts is deficient. The document identifies as significance criteria both (1) whether the Project would generate significant GHG emissions, and (2) whether it would "conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHG." DEIR at 3.8-19. The DEIR fails to adequately evaluate the first significance criterion because it fails to account for potentially increased GHG emissions associated with the processing of varying biofuel feedstocks. It also fails to adequately evaluate the second significance criterion, because it ignores the potential downstream impact of a significant increase in biofuel production on state and local climate goals. As noted in the Scoping Comments but not addressed in the DEIR at all, those goals include an increase in use of battery electric vehicles to electrify the state's transportation sector and decrease use of combustion fuels¹⁷⁷; as well as a "Diesel Free by '33" pledge promoted by BAAQMD and entered into by Contra Costa County, which commits the County to, inter alia, "[u]se policies and incentives that assist the private sector as it moves to diesel-free fleets and buildings."¹⁷⁸ The DEIR further fails to identify the significant shifting of GHG emissions from California to other jurisdictions that would likely occur as a consequence of the Project.

The following sections address the various potential conflicts between the Project and state and local plans, policies, and regulations adopted for the purpose of reducing GHG emissions that render the Project's impacts potentially significant, but which the DEIR nonetheless failed to consider.

A. The DEIR Air Impacts Analysis Fails to Take Into Account Varying GHG Emissions from Different Feedstocks and Crude Slates

The following subsections discuss ways in which Project GHG emissions vary widely with feedstock choice, as well as reasons why those emissions may increase rather than decrease over the comparable crude oil refining emissions.

¹⁷⁷ Executive Order N-79-20 dated September 23, 2020, *available at* <u>https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-text.pdf</u>.

¹⁷⁸ See <u>https://dieselfree33.baaqmd.gov/</u> (landing page), <u>https://dieselfree33.baaqmd.gov/statement-of-purpose</u> (text of the pledge), <u>https://dieselfree33.baaqmd.gov/signatories</u> (signatories).

1. <u>Processing Biofuel Feedstock Instead of Crude Oil Can Increase Carbon Emission</u> <u>Intensity of the Refining Process</u>

The DEIR did not address the fact that the process of refining biofuel feedstocks is significantly more carbon intense than crude oil refining. This increased carbon intensity has primarily to do with the fact that HEFA feedstocks have vastly more oxygen in them than crude oil – and hence require more hydrogen production to remove that oxygen. The oxygen content of the various proposed Project feedstocks is approximately 11 wt. % (Table 1), compared with refining petroleum crude, which has virtually no oxygen. Oxygen would be forced out of the HEFA feedstock molecules by bonding them with hydrogen to make water (H₂O), which then leaves the hydrocarbon stream. This process consumes vast amounts of hydrogen, which must be manufactured in amounts that processing requires. The deoxygenation process chemistry further boosts HEFA process hydrogen demand by requiring saturation of carbon double bonds.

These "hydrodeoxygenation" (HDO) reactions are a fundamental change from petroleum refining chemistry. This new chemistry is the main reason why—despite the "renewable" label Phillips 66 has chosen—its biorefinery could emit more carbon per barrel processed than petroleum refining. That increase in the carbon intensity of fuels processing would be directly connected to the proposed change in feedstock.

t/y: metric tons/year k	:g: kilogram	b: barrel, 42	U.S. gallons		
	Feedstock		Difference		
	Tallow	Soy oil	Fish oil	Soy oil-tallow	Fish oil-tallow
Processing characteristics ^a					
Oxygen content (wt. %)	11.8	11.5	11.5	- 0.3	- 0.3
H ₂ for saturation (kg H ₂ /b)	0.60	1.58	2.08	+ 0.98	+ 1.48
H ₂ for deoxygenation (kg H ₂ /b)	4.11	4.11	4.13	0.00	+ 0.02
Other H ₂ consumption (kg H ₂ /b)	0.26	0.26	0.26	0.00	0.00
Process H ₂ demand (kg H ₂ /b)	4.97	5.95	6.47	0.98	1.50
Hydrogen plant emission factor					
HEFA mixed feed (g CO ₂ /g H ₂) ^a	9.82	9.82	9.82		
Methane feed (g CO ₂ /g H ₂) ^b	9.15	9.15	9.15		
Hydrogen plant CO ₂ emitted					
HEFA mixed feed (t/y) ^a	1,420,000	1,710,000	1,850,000	290,000	430,000
Methane feed (t/y) ^b	1,330,000	1,590,000	1,730,000	260,000	400,000

Table 1. Impact of Project Feedstock Choice on CO2 Emissions from Hydrogen Production for Phillips 66 Project Targeting Diesel: Estimates based on readily available data.

a. Data from HEFA feedstock-specific composition analysis based on multiple feed measurements, process analysis for HEFA hydro-conversion process hydrogen demand, and emission factor based on median SF Bay Area hydrogen plant verified design performance and typical expected HEFA process hydrogen plant feed mix. From Karras, 2021b. <u>See</u> also Karras, 2021a.
b. Data from Sun et al. for median California merchant steam methane reforming hydrogen plant performance. Sun et al., 2019. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. Environ. Sci. Technol. 53: 7103–7113. https://pubs.acs.org/doi/10.1021/acs.est.8b06197 Note that these steam methane reforming plant data are shown for context. Steam reforming of HEFA byproduct propane can be expected to increase direct emissions from the steam reforming and shift reactions. Karras, 2021a. Mass emissions based on 80,000 b/d project capacity. Fish oil values shown are based on Menhaden.

Hydrogen must be added to bond with oxygen in HEFA feeds and thereby remove the oxygen in them, and to bond with carbon atoms in fatty acids in order to facilitate this deoxygenation of the feed carbon chains converted to hydrocarbons. This increases the hydrogen needed for the proposed HEFA¹⁷⁹ processing over and above the hydrogen that was needed for the crude refining that formerly took place at the Refinery. Deoxygenation is the major driver of this high process hydrogen demand, but HEFA feeds are consistently high in hydrogen, while some have more carbon double bonds that must be "saturated" first, and thus higher saturation hydrogen demand, than other feeds. Table 1 shows both of these things.

The DEIR – to the extent it considers past petroleum refining emissions in its analysis – must consider the air emissions impact of increased hydrogen use. Oxygen-rich HEFA feedstocks force increased hydrogen production – and attendant hydrogen production emissions - by a proportional amount. These emissions are significant, because Phillips 66 proposes to make that hydrogen in existing fossil fuel hydrogen plants. This hydrogen steam reforming technology is extremely carbon intensive. It burns a lot of fuel to make superheated high-pressure steam mixed with hydrocarbons at temperatures up to 1,400–1,900 °F. And on top of those combustion emissions, its "reforming" and "shift" reactions produce hydrogen by taking it from the carbon in its hydrocarbon feed. That carbon then bonds with oxygen to form carbon dioxide (CO₂) that emits as well. Making the vast amounts of hydrogen needed for Project processing could cause CO₂ emissions from Project hydrogen plants alone to exceed a million tons each year.

The resulting carbon intensity difference between crude oil refining and biofuel refining is striking. CO₂ emissions from U.S. petroleum refineries averaged 41.8 kg per barrel crude feed from 2015-2017 (the most recent data available).¹ By contrast, HEFA production emits 55-80 kg per barrel biomass feed associated with increased hydrogen production *alone* – such exceeding petroleum refining carbon intensity by 32-91 percent. Beyond the hydrogen-production driver of increased carbon intensity, additional CO₂ would emit from fuel combustion for energy to heat and pressure up HEFA hydro-conversion reactors, precondition and pump their feeds, and distill, then blend their hydrocarbon products.¹⁸⁰

2. GHG Emissions Impacts Vary With Different Potential Feedstocks

Crucially, feeds that the Project targets, such as tallow and SBO - and some that it does not but may nonetheless potentially use such as fish oil - require hydrogen for processing to significantly different degrees. Table 1 shows this difference in weight percent, a common measure of oil feed composition. The 0.98 kilograms per barrel feed difference in hydrogen saturation between soy oil and tallow is why processing soy oil requires that much more hydrogen per barrel of Project feed (0.98 kg/b). Table 1. Similarly, the 1.48 kg/b difference

¹⁷⁹ As noted in previous sections, the type of drop-in biofuel technology proposed is called "Hydrotreating Esters and Fatty Acids" (HEFA).

¹⁸⁰ Karras, 2021. Unverified potential to emit calculations provided by one refiner¹ suggest that these factors could add ~21 kg/b to the 55-80 kg/b from HEFA steam reforming. This ~76–101 kg/b HEFA processing total would exceed the 41.8 kg/b carbon intensity of the average U.S. petroleum refinery by ~82-142 percent. Repurposing refineries for HEFA biofuels production using steam reforming would thus increase the carbon intensity of hydrocarbon fuels processing. *See* supporting material for Karras, 2021a

between fish oil and tallow requires 1.48 more kilograms of hydrogen per barrel to make socalled "renewable" diesel from fish oil than to make it from tallow. *Id*.

Thus, feedstock choice would drive the magnitude of carbon emissions to a significant degree. *Id.* For instance, to the extent Phillips 66 runs SBO, Project hydrogen plants could emit approximately 290,000 metric tons more CO₂ each year than if it runs tallow. *Id.* This 290,000 t/y excess would exceed the emissions significance threshold for greenhouse gases in the DEIR, 10,000 metric tons/year CO₂e,¹⁸¹ by *28 times.* And if Phillips 66 were to run fish oil, another potential feedstock not specifically targeted but also not excluded, the estimates in Table 1 suggest that Project hydrogen plants could emit 430,000 tons/year more CO₂ than if it runs tallow, or *42 times* that significance threshold. Thus, available evidence indicates that the choice among Project feedstocks itself could result in significant emission impacts. Therefore, emissions from each potential feedstock should be estimated in the EIR.

The CO₂ emissions estimates in Table 1 are relatively robust and conservative, though the lack of project-specific details disclosed in the DEIR described in Section II still raises questions a revised County analysis should answer. The carbon intensity estimate for HEFA hydrogen production is remarkably close that for steam methane reforming, as expected since hydrocarbon byproducts of HEFA refining, when mixed with methane in project hydrogen plants, would form more CO₂ per pound of hydrogen produced than making that hydrogen from methane alone. The estimate may indeed turn out to be too low, given the variability in hydrogen plant emissions generally,¹⁸² and the tendency of older plant designs to be less efficient and higher emitting. The DEIR should have evaluated this part of Project processing emissions using data for the Refinery's hydrogen plants that would be used by the Project; and Phillips 66 should have been required to provide detailed data on those plants to support this estimate.

Feedstock choices can impact other greenhouse gases as well through varying hydrogen demand. In addition to the potential for feedstock-driven increases in emissions of CO₂, the proposed hydrogen production would emit methane, a potent greenhouse gas that also contributes to ozone formation, via "fugitive" leaks or vents. Aerial measurements and investigations triggered by those recent measurements suggest, further, that methane emissions from hydrogen production have been underestimated dramatically.¹⁸³

Crucially as well, making a different product slate can increase GHG emissions from the same feedstock. This is why, for example, the California Air Resources Board estimates a different carbon intensity for refining gasoline, diesel, or jet fuel from the same crude feed. Targeting jet fuel instead of drop-in diesel production from the same vegetable oil or animal fat

¹⁸¹ <u>See</u> Chevron Refinery Modernization Project EIR. SCH # 2001062042. 2014. City of Richmond, CA. <u>See</u> esp. pp. 4.8-11, 4.8-12, 4.8-18, 4.8-19, 4.8-24, 4.8-27, 4.8-28, 4.8-38, 4.8-70 (10,000 metric tons/yr significance threshold).

¹⁸² Sun et al., 2019. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. Environ. Sci. Technol. 53: 7103–7113. https://pubs.acs.org/doi/10.1021/acs.est.8b06197.

¹⁸³ Guha et al., 2020. *Environ. Sci. Technol.* 54: 9254–9264 and Supporting Information. https://dx.doi.org/10.1021/acs.est.0c01212

feed could increase processing emissions significantly.¹⁸⁴ Thus, since differences between potential Project feedstocks and Project products could each increase emissions independently or in combination, the DEIR should have estimated emissions for each potential Project feedstock for product slates targeting both diesel and jet fuel.

Thus, processing emissions of GHGs should have been estimated in the DEIR for each potential Project feedstock and product slate, or range of product slates, proposed to be manufactured from it, including a reasonable worst case scenario.

B. The DEIR Failed to Consider the Impact of Biofuel Oversupply on Climate Goals

California has implemented a series of legislative and executive actions to reduce greenhouse gas emissions (GHGs) and address climate change. Two flagship bills were aimed at directly reducing GHG emissions economy wide: AB32, which called for reductions in GHG emissions to 1990 levels by 2020;¹⁸⁵ and SB32, which calls for reductions in GHG emissions to 40% below 1990 levels by 2030.¹⁸⁶ Following this, California Executive Order S-3-05 calls for a reduction in GHG emissions to 80% below 1990 levels by 2050.¹⁸⁷ Finally, Executive Order B-55-18 calls for the state "to achieve carbon neutrality as soon as possible, but no later than 2045, and achieve and maintain net negative emissions thereafter."¹⁸⁸

In order to meet these legislative and executive imperatives, numerous goals have been set to directly target the state's GHG emissions just in the last two years: for 100% of light-duty vehicle (LDV) sales to be zero-emission vehicles (ZEVs) by 2035; for 100% of medium- and heavy-duty vehicle (MDV and HDV) sales to be ZEVs by 2045;¹⁸⁹ for a ban on hydraulic fracturing by 2024; and for an end to all state oil drilling by 2045.

Such goals, both the ZEV sales mandates that target liquid combustion fuel demand and the proposed bans on petroleum extraction that target supply, point to the need to transition from petroleum-based transportation fuels to sustainable alternatives. The DEIR frames biofuels as a means to reduce reliance on "traditional" transportation fuels, the original purpose of the LCFS. DEIR at 3.8-13. It insists that this Project is a necessary fulfillment of the 2017 Scoping Plan and LCFS. DEIR at 3.8-22. However, the 2017 Scoping Plan targets do not distinguish between fuel technologies (e.g. HEFA v. Fischer-Tropsch) or feedstock (crop-based lipid v. cellulosic). Yet

¹⁸⁴ Seber et al., 2014. *Biomass and Bioenergy* 67: 108–118. <u>http://dx.doi.org/10.1016/j.biombioe.2014.04.024</u>. <u>See</u> also Karatzos et al., 2014. Report T39-T1, IEA Bioenergy Task 39. IEA ISBN: 978-1-910154-07-6. (<u>See</u> esp. p. 57; extra processing and hydrogen required for jet fuel over diesel.) <u>https://task39.sites.olt.ubc.ca/files/2014/01/Task-39-Drop-in-Biofuels-Report-FINAL-2-Oct-2014-ecopy.pdf See also Karras, 2021b.</u>

¹⁸⁵ Legislative Information, AB-32, California Global Warming Solutions Act of 2006 (Accessed November 29, 2021), <u>http://www.leginfo.ca.gov/pub/05-06/bill/asm/ab_0001-0050/ab_32_bill_20060927_chaptered.html</u>

¹⁸⁶ Legislative Information, SB-32 California Global Warming Solutions Act of 2006: Emissions Limit, (Accessed November 29, 2021), from <u>https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32</u>

¹⁸⁷ Executive Order S-3-05. Executive Department, State of California, Arnold Schwarzenegger, Governor, State of California; <u>https://www.library.ca.gov/wp-content/uploads/GovernmentPublications/executive-order-proclamation/5129-5130.pdf</u>.

¹⁸⁸ Executive Order B-55-18. Executive Department, State of California, Edmund Brown, Governor, State of California; https://www.ca.gov/archive/gov39/wp-content/uploads/2018/09/9.10.18-Executive-Order.pdf. ¹⁸⁹ Executive Order N-79-20. Executive Department, State of California, Gavin Newsom, Governor, State of

California; https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf

feedstock and technology make a significant difference on GHG emissions. If anything, the environmental analysis of the 2017 Scoping Plan, like that of the LCFS, predicted that cropbased biofuels would need additional Project-specific environmental analysis and mitigation.¹⁹⁰ This cursory invocation of the LCFS fails to address the problem of biofuel volume: too much biofuel production risks interfering with the ZEV goals most recently established by Governor Newsom. The overproduction problem is related in part to the higher carbon intensity of biofuel refining as compared to oil refining, and in part to its volume effects on the types, amounts, and locations of both zero-emission and petroleum fuels production and use. This problem of overproduction is not addressed in the LCFS. The LCFS, designed to establish incremental perbarrel impacts, is not set up to address the macro impact of overproduction or overuse of combustion fuels on California climate goals.

In numerous state-sponsored studies, there is acknowledgment of the need to limit our biofuel dependence. These studies consistently demonstrate that California's climate goals require a dramatic reduction in the use of *all* combustion fuels in the state's transportation sector, not just petroleum-based fuels. They indicate the need for biofuel use to remain limited. Specifically, pathway scenarios developed by Mahone et al. for the California Energy Commission (CEC),¹⁹¹ Air Resources Board (CARB)¹⁹² and Public Utilities Commission,¹⁹³ Austin et al. for the University of California,¹⁹⁴ and Reed et al. for UC Irvine and the CEC⁵⁸ add semi-quantitative benchmarks to the 2050 emission target for assessing refinery conversions to biofuels. They join other work in showing the need to decarbonize electricity and electrify

https://ww2.arb.ca.gov/sites/default/files/classic/cc/scopingplan/2030sp_appf_finalea.pdf.

¹⁹¹ Mahone et al., 2018. *Deep Decarbonization in a High Renewables Future: Updated results from the California PATHWAYS Model;* Report CEC-500-2018-012. Contract No. EPC-14-069. Prepared for California Energy Commission. Final Project Report. Energy and Environmental Economics, Inc.: San Francisco, CA. https://ww2.energy.ca.gov/2018publications/CEC-500-2018-012/CEC-500-2018-012.pdf

¹⁹⁰ California Air Resources Board. Appendix F: Final Environmental Analysis for The Strategy for Achieving California's 2030 Greenhouse Gas Target, pp. 56,

¹⁹² Mahone et al., 2020. Achieving Carbon Neutrality in California: Pathways Scenarios Developed for the California Air Resources Board, California Air Resources Board, Energy and Environmental Economics, Inc. https://ww2.arb.ca.gov/sites/default/files/2020-10/e3_cn_final_report_oct2020_0.pdf

¹⁹³ Mahone et al., 2020b. *Hydrogen Opportunities in a Low-Carbon Future: An Assessment of Long-Term Market Potential in the Western United States;* Energy and Environmental Economics, Inc.: San Francisco, CA. Report prepared for ACES, a joint development project between Mitsubishi Hitachi Power Systems Americas, Inc. and Magnum Development, LLC. Submitted to the California Public Utilities Commission June 2020. https://www.ethree.com/?s=hydrogen+opportunities+in+a+low-carbon+future

¹⁹⁴ Austin et al., 2021. *Driving California's Transportation Emissions to Zero;* Report No.: UC-ITS-2020-65. Institute of Transportation Studies, University of California. DOI: 10.7922/G2MC8X9X. https://escholarship.org/uc/item/3np3p2t0

transportation.¹⁹⁵ Their work evaluates a range of paths to state climate goals,¹⁹⁶ analyzes the roles of liquid hydrocarbon combustion fuels and hydrogen in this context,¹⁹⁷ and addresses potential biomass fuel chain effects on climate pathways.¹⁹⁸

Mahone's study prepared for CARB explored three scenarios for achieving carbon neutrality by 2045.¹⁹⁹ The scenarios include "The Zero Carbon Energy scenario" which would achieve zero-fossil fuel emission by 2045 with minimal use of carbon dioxide removal (CDR) strategies, "The High CDR scenario" which would achieve an 80% reduction in gross GHG emissions by 2045 but relies heavily on CDR, and "The Balanced scenario" which serves as a midpoint between the other two scenarios. Notably, all three of these pathways cut liquid petroleum fuel use dramatically, with biofuels replacing only a portion of that petroleum. Chart 3 illustrates the transportation fuel mix for these three pathways:

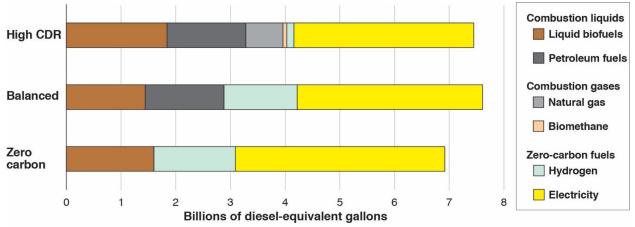


Chart 3: California Transportation Fuels Mix in 2045: Balanced and "bookend" pathways to the California net-zero carbon emissions goal.

Adapted from Figure 8 in Mahone et al. (2020).²⁰⁰ Fuel shares converted to diesel energy-equivalent gallons based on Air Resources Board LCFS energy density conversion factors. **CDR:** carbon dioxide removal (sequestration).

¹⁹⁵ Mahone et al 2018; Mahone et al. 2020a; Mahone et al. 2020b; Austin et al. 2021; Reed et al., 2020. *Roadmap for the Deployment and Buildout of Renewable Hydrogen Production Plants in California;* Final Project Report CEC-600-2020-002. Prepared for the California Energy Commission by U.C. Irvine Advanced Power and Energy Program. Clean Transportation Program, California Energy Commission: Sacramento, CA. https://efiling.energy.ca.gov/getdocument.aspx?tn=233292; Williams et al., 2012. The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity. *Science* 53–59. https://doi.org/DOI:10.1126/science.1208365; Williams et al., 2015. Pathways to Deep Decarbonization in the United States; The U.S. report of the Deep Decarbonization Pathways Project of the Sustainable Development Solutions Network and the Institute of Sustainable Development and International Relations. Revision with technical supp. Energy and Environmental Economics, Inc., in collaboration with Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory. https://doi.org/10.1029/2020AV000284. https://doi.org/10.1029/2020AV000284.

¹⁹⁶ Mahone et al. 2020a.

¹⁹⁷ Mahone et al. 2018; Mahone et al. 2020a; Mahone et al. 2020b; Austin et al. 2020; Reed et al. 2020.

¹⁹⁸ Mahone et al. 2018; Mahone et al. 2020a; Reed et al. 2020.

¹⁹⁹ Mahone et al., 2020. Achieving Carbon Neutrality in California: Pathways Scenarios Developed for the California Air Resources Board, California Air Resources Board, Energy and Environmental Economics, Inc. <u>https://ww2.arb.ca.gov/sites/default/files/2020-10/e3_cn_final_report_oct2020_0.pdf</u> ²⁰⁰ Mahone et al., 2020.

Total liquid hydrocarbon combustion fuels for transportation in 2045, including both petroleum and biofuels, range among the pathways from approximately 1.6 to 3.3 billion gallons/year, with the lower end of the range corresponding to "The Zero Carbon Energy scenario," and the higher end of the range corresponding to "The High CDR scenario." The range represents roughly 9% to 18% of statewide annual petroleum transportation fuels use from 2013-2017, indicating the planned reduction in liquid hydrocarbon combustion fuels reliance by 2045.²⁰¹ Liquid biofuels account for approximately 1.4 to 1.8 billion gallons/year by 2045, which is roughly 40% to 100% of liquid transportation fuels use in 2045 depending on scenario, with 100% corresponding to "The Zero Carbon Energy Scenario," the most ambitious of the three, though biofuels constitute the entirety of liquid transportation fuel use, liquid transportation fuel use overall is greatly reduced.

These State-commissioned studies suggest limits on the use of biofuels by specifically excluding or limiting the production of HEFA ("lipid") fuels. PATHWAYS, the primary modeling tool for the AB 32 Scoping Plan, now run a biofuels module to determine a least-cost portfolio of the biofuel products ultimately produced (e.g. liquid biofuel, biomethane, etc.) based on biomass availability.²⁰² Mahone et al. chose to exclude purpose-grown crops because of its harmful environmental impacts and climate risks and further limitied the biomass used to in-state production in addition to California's population-weighted share of total national waste biomass supply.²⁰³ Consequently, it was assumed that all California biofuel feedstock should be cellulosic residues as opposed to the typical vegetable oil and animal fat HEFA feedstocks. A study by Austin et al. meanwhile, in considering pathways to reduce California's transportation emissions, placed a cap on HEFA jet fuel and diesel use to a maximum of 0.5–0.6 and 0.8–0.9 billion gallons/year, respectively.²⁰⁴ Yet new in-state HEFA distillate (diesel and jet fuel) production proposed statewide, with a large share to come from the Refinery, would total approximately 2.1 billion gallons/year when fully operational.²⁰⁵ If fully implemented, HEFA

²⁰¹ Mahone et al., 2020.

²⁰² E3 introduced a new biofuels module in the model that, unlike previous iterations of the PATHWAYS model, endogenously selects least-cost biofuel portfolios given the assumed available biomass. Mahone et al., 2020, footnote 2 at 19-20.

²⁰³ See e.g., Mahone et al., 2018. Deep Decarbonization in a High Renewables Future: Updated results from the California PATHWAYS Model; Report CEC-500-2018-012. Contract No. EPC-14-069. Prepared for California Energy Commission. Final Project Report. Energy and Environmental Economics, Inc.: San Francisco, CA. <u>https://ww2.energy.ca.gov/2018publications/CEC-500-2018-012/CEC-500-2018-012.pdf</u> ("most scenarios apply this more restrictive biomass screen to avoid the risk that the cultivation of biomass for biofuels could result in increased GHG emissions from natural or working lands.", pp. 10).

²⁰⁴ Austin et al., 2021. *Driving California's Transportation Emissions to Zero;* Report No.: UC-ITS-2020-65. Institute of Transportation Studies, University of California. DOI: 10.7922/G2MC8X9X. https://escholarship.org/uc/item/3np3p2t0

²⁰⁵ Supporting Material Appendix for *Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing;* prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting, <u>www.energy-re-source.com</u>; *Application for Authority to Construct Permit and Title V Operating Permit Revision for Rodeo Renewed Project: Phillips 66 Company San Francisco Refinery (District Plant No. 21359 and Title V Facility # A0016);* Prepared for Phillips 66 by Ramboll US Consulting, San Francisco, CA. May 2021; *Initial Study for: Tesoro Refining & Marketing Company LLC—Marathon Martinez Refinery Renewable Fuels Project;* received by Contra Costa County Dept. of Conservation and Development 1 Oct 2020; *April 28, 2020 Flare Event Causal Analysis; Tesoro Refining and Marketing Company, subsidiary of Marathon Petroleum, Martinez Refinery Plant #B2758;* report dated 29 June, 2020 submitted by Marathon to the

fuel production could exceed caps of 0.0–1.5 billion gallons/year prescribed by the aforementioned state climate pathways.

In both studies, the reason given for limiting HEFA fuel reliance is the difficult-to-predict land use emissions associated with HEFA feedstocks. As discussed in the previous subsection, HEFA fuels can be associated with significant greenhouse gas emissions, on par with emissions from conventional oil production in some cases. Additionally, the refining emissions associated with HEFA fuel cycle emissions—an impact that the DEIR did not consider. The carbon intensity of HEFA refining is roughly 180% to 240% of the carbon intensity of refining at the average U.S. crude refinery.²⁰⁶ Those refining emission increments would then add to the potentially larger effect of overuse of biofuels instead of ZEVs.

Repurposing refineries for HEFA biofuels production using steam reforming would thus increase the carbon intensity of hydrocarbon fuels processing when climate goals demand that carbon intensities decrease. That could contribute significantly to emissions in excess of the needed climate protection and state policy trajectory. California's goal of 2050²⁰⁷ goal of emissions 80% below 1990 levels by 2050 is equivalent to 86.2 million tons (MT) CO₂eq emissions in 2050. Given future projections of transportation fuel demand, HEFA diesel and jet fuel CO₂eq emissions could reach 66.9 Mt per year in 2050. ²⁰⁸ Adding in emissions from remaining petroleum fuel production could push emissions to 91 Mt in 2050.²⁰⁹ Total 2050 emissions could thus be larger than the state target.

Similarly, the goal of carbon neutrality by 2045 either requires no emissions in 2045, or for emissions that do occur to be offset by negative emissions technologies such as carbon capture and storage (CCS). Relying on HEFA fuels in the future means that there will be emissions, so without CCS, carbon neutrality will not be reached. Yet carbon capture and storage has not been proven at scale, so it cannot be relied upon to offset HEFA fuel-associated emissions to meet mid-century emissions goals. Existing CCS facilities capture less than 1 percent of global carbon emissions, while CCS pilot projects have repeatedly overpromised and underdelivered in providing meaningful emissions reductions.²¹⁰ Therefore, repurposing idled petroleum refinery assets for HEFA biofuels will cause us to miss key state climate benchmarks.

by MRS Environmental, 1306 Santa Barbara St., Santa Barbara, CA; Brelsford, R. Global Clean Energy lets contract for Bakersfield refinery conversion project. *Oil & Gas Journal*. 2020. Jan. 9, 2020.

Bay Area Air Quality Management District: San Francisco, CA. <u>https://www.baaqmd.gov/about-air-</u> <u>quality/research-and-data/flare-data/flare-causal-reports;</u> *Paramount Petroleum, AltAir Renewable Fuels Project Initial Study*; submitted to City of Paramount Planning Division, 16400 Colorado Ave., Paramount, CA. Prepared

²⁰⁶ The difference between the upper and lower bounds of that range is driven by the (here undisclosed in the DEIR) difference between choices by the refinery to be made by Phillips 66 among HEFA feeds, and between diesel versus jet fuel production targets. Karras, 2021a.

²⁰⁷ The 80% is required as a direct emission reduction, not a net reduction that may take into consideration negative emission measures such as CCS. Executive Order S-3-05.

²⁰⁸ Karras, 2021a. For context, HEFA hydrogen steam reforming emissions alone could account for some 20 Mt/yr or more of this projected 66.9 Mt/yr.

²⁰⁹ Id.

²¹⁰ Center for International Environmental Law, Confronting the Myth of Carbon-Free Fossil Fuels, Why Carbon Capture Is Not a Climate Solution (2021), <u>https://www.ciel.org/wp-content/uploads/2021/07/Confronting-the-Myth-of-Carbon-Free-Fossil-Fuels.pdf</u>.

The DEIR's conclusion that the Project is consistent with state climate directives without the analysis described above is a fatal flaw in that conclusion. A recirculated DEIR must evaluate all of the pathway studies and analysis described in this section, and make a determination regarding the Project's consistency with the state's climate law and policy based on all of the factors described in this comment.

C. The DEIR Failed to Consider a Significant Potential GHG Emission Shifting Impact Likely to Result from the Project

Despite claims that biofuels have a carbon benefit, the data thus far show that increased production of the particular type of biofuel that the Project proposes has actually had the effect of *increasing* total GHG emissions, by simply pushing them overseas. Instead of replacing fossil fuels, adding renewable diesel to the liquid combustion fuel chain in California resulted in refiners increasing exports of petroleum distillates burned elsewhere, causing a worldwide net increase in GHG emissions. The DEIR improperly concludes the Project would decrease net GHG emissions in the DEIR further obscures causal factors in the emission shifting by which the Project would cause and contribute to this significant potential impact.

1. <u>The DEIR Fails to Disclose or Evaluate Available Data Which Contradict Its</u> <u>Conclusion That the Project Would Result in a Net Decrease in GHG Emissions</u>.

State climate law warns against "a reduction in emissions of greenhouse gases within the state that is offset by an increase in emissions of greenhouse gases outside the state."²¹² However, the DEIR fails to evaluate this emission-shifting impact of the Project. Relevant state data that the DEIR failed to disclose or evaluate include volumes of petroleum distillates refined in California²¹³ and total distillates—petroleum distillates and diesel biofuels—burned in California.²¹⁴ Had the DEIR evaluated these data the County could have found that its conclusion regarding net GHG emissions resulting from the Project was wholly unsupported.

As shown in Chart 4, petroleum distillate fuels refining for export continued to expand in California in the last two decades even as biofuel production ramped up in recent years. It is clear from this data that renewable diesel production during those decades -- originally expected to replace fossil fuels – actually merely added a new source of carbon to the liquid combustion fuel chain. Total distillate volumes, including diesel biofuels burned in-state, petroleum distillates burned in-state, and petroleum distillates refined in-state and exported to other states and nations, increased from approximately 4.3 billion gallons per year to approximately 6.4 billion gallons per year between 2000 and 2019.^{215 216}

²¹¹ "Project operations would decrease emissions of GHGs that could contribute to global climate change" (DEIR p. 2-5) including "indirect emissions" (DEIR p. 4.8-258) and "emissions from transportation fuels" (DEIR p. 4.8-266). ²¹² CCR §§ 38505 (j), 38562 (b) (8).

²¹³ CEC, Fuel Watch data.

²¹⁴ CARB GHG Inventory Fuel Activity data, 2019 update.

²¹⁵ Id.

²¹⁶ CEC *Fuel Watch*. Weekly Refinery Production. California Energy Commission: Sacramento, CA. https://ww2.energy.ca.gov/almanac/petroleum_data/fuels_watch/output.php

Specifically, crude refining for export (black in the chart) expanded after in-state burning of petroleum distillate (olive) peaked in 2006, and the exports expanded again from 2012 to 2019 with more in-state use of diesel biofuels (dark red and brown). From 2000 to 2012 petroleum-related factors alone drove an increase in total distillates production and use associated with all activities in California of nearly one billion gallons per year. Then total distillates production and use associated with activities in California increased again, by more than a billion gallons per year from 2012 to 2019, with biofuels accounting for more than half that increment. These state data show that diesel biofuels did not, in fact, replace petroleum distillates refined in California during the eight years before the Project was proposed. Instead, producing and burning more renewable diesel *along with* the petroleum fuel it was supposed to replace emitted more carbon.

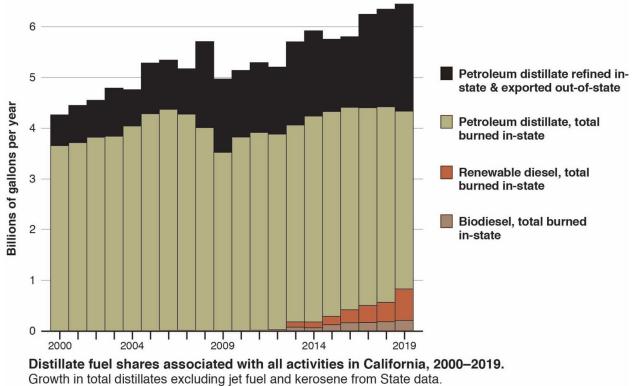


CHART 4 Data from CEC Fuel Watch and CARB GHG Inventory Fuel Activity Data, 2019 update.

2. The DEIR Fails to Consider Exports in Evaluating the Project's Climate Impact

The DEIR focuses on potential negative effects of reliance on imports if the proposed Project is rejected in favor of alternatives,²¹⁷ while ignoring fuels exports from in-state refineries and conditions under which these exports occur – a key factor in assessing the Project's global climate impact, as discussed in the previous subsection. As a result the DEIR fails to disclose that crude refineries here are net fuels exporters, that their exports have grown as in-state and

²¹⁷ DEIR pp. 5-3 through 5-7, 5-9, 5-10, 5-19, 5-22 through 5-24.

West Coast demand for petroleum fuels declined, and that the structural overcapacity resulting in this export emissions impact would not be resolved and could be worsened by the Project.

Due to the concentration of petroleum refining infrastructure in California and on the U.S. West Coast, including California and Puget Sound, WA, these markets were net exporters of transportation fuels before renewable diesel flooded into the California market.²¹⁸ Importantly, before diesel biofuel addition further increased refining of petroleum distillates for export, the structural over-capacity of California refining infrastructure was evident from the increase in their exports after in-state demand peaked in 2006. *See* Chart 4. California refining capacity, especially, is overbuilt.²¹⁹ Industry reactions -- seeking to protect those otherwise stranded refining assets through increased refiner fuels exports as domestic markets for petroleum fuels declined -- resulted in California refiners exporting fully 20% to 33% of statewide refinery production to other states and nations from 2013–2017.²²⁰ West Coast data further demonstrate the strong effect of changes in domestic demand on foreign exports from this over-built refining center.²²¹ *See* Table 2.

Table 2. West Coast (PADD 5) Finished Petroleum Products: Decadal Changes in Domestic Demand and Foreign Exports, 1990–2019.

Total volumes reported for ten-year periods							
	Volume (billions of gallons)		Decadal Change (%)				
Period	Demand	Exports	Demand	Exports			
1 Jan 1990 to 31 Dec 1999	406	44.2	_	_			
1 Jan 2000 to 31 Dec 2009	457	35.1	+13 %	-21 %			
1 Jan 2010 to 31 Dec 2019	442	50.9	-3.3 %	+45 %			

Data from USEIA, West Coast (PADD 5) Supply and Disposition; www.eia.gov/dnav/pet/pet_sum_snd_d_r50_mbbl_m_cur.htm

Current California and West Coast data demonstrate that this crude refining overcapacity for domestic petroleum fuels demand that drives the emission-shifting impact is unresolved and would not be resolved by the proposed Project and related Contra Costa County crude-to-biofuel conversion project. Accordingly, the Project can be expected to worsen in-state petroleum refining overcapacity, and thus the emission shift, by adding a very large volume of renewable diesel to the California liquid combustion fuels mix.

Despite the Project objective to provide renewable fuels to the California market, which could further shift petroleum fuels from this market, the DEIR fails to disclose or evaluate this causal factor in the observed emission shifting impact of recent renewable fuel additions.

²¹⁸ USEAI, 2015.

 ²¹⁹ Karras, 2020. Decommissioning California Refineries.
 ²²⁰ Id

²²¹ USEIA, West Coast (PADD 5) *Supply and Disposition;* www.eia.gov/dnav/pet/pet_sum_snd_d_r50_mbbl_m_cur.htm

3. The DEIR Fails to Describe or Evaluate Project Design Specifications That Would Cause and Contribute to Significant Emission-Shifting Impacts

By failing to disclose and consider refinery export patterns, the DEIR fails to address the essential question of how fully integrating renewable diesel into petroleum fuels refining, distribution, and combustion infrastructure could worsen emission shifting by more directly tethering biofuel addition here to petroleum fuel refining for export. Compounding its error, the DEIR fails to evaluate the degree to which the Project's HEFA diesel production capacity could add to the existing statewide distillates production oversupply, and how much that could worsen the emission shifting impact. Had it done so, using readily available state default factors for the carbon intensities of these fuels, the County could have found that the Project would likely cause and contribute to significant climate impacts. See Table 3.

Table 3. Potential GHG Emission Impacts from Project-induced Emission Shifting: Estimates Based on Low Carbon Fuel Standard Default Emission Factors.

RD: renewable diesel PD: pet	roleum distillate CO₂e: carbon	dioxide equivalents	Mt: million metric tons
Estimate Scope	Phillips 66 Project	Marathon Project	Both Projects
Fuel Shift (millions of gallons per da RD for in-state use PD equivalent exported	ny) ^a 1.860 1.860	1.623 1.623	3.482 3.482
Emission factor (kg CO ₂ e/galllon) ^b RD from residue biomass feedstoc RD from crop biomass feedstock PD (petroleum distillate [ULSD fac	8.427	5.834 8.427 13.508	5.834 8.427 13.508
Fuel-specific emissions (Mt/year) ^c RD from residue biomass feedstoo RD from crop biomass feedstock PD (petroleum distillate)	x 3.96 5.72 9.17	3.46 4.99 8.00	7.42 10.7 17.2
Net emission shift impact ^d Annual minimum (Mt/year) Annual maximum (Mt/year) Ten-year minimum (Mt) Ten-year maximum (Mt)	3.96 5.72 39.6 57.2	3.46 4.99 34.6 49.9	7.42 10.7 74.2 107

DD, renewable discal DD, netroleurs distillate CO externa disvide envirolente

a. Calculated based on DEIR project feedstock processing capacities, yield reported for refining targeting HEFA diesel by Pearlson et al., 2013, and feed and fuel specific gravities of 0.916 and 0.775 respectively. Pearlson, M., Wollersheim, C., and Hileman, J., A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production, Biofuels, Bioprod. Bioref. 7:89-96 (2013). DOI: 10.1002/bbb.1378. b. CARB default emission factors from tables 2, 4, 7-1, 8 and 9, Low Carbon Fuel Standard Regulation, CCR §§ 95484-95488. c. Fuel-specific emissions are the products of the fuel volumes and emission factors shown. d. The emission shift impact is the net emissions calculated as the sum of the fuel-specific emissions minus the incremental emission from the petroleum fuel v. the same volume of the biofuel. Net emissions are thus equivalent to emissions from the production and use of renewable diesel that does not replace petroleum distillates, as shown. Annual values compare with the DEIR significance threshold (0.01 Mt/year); ten-year values provide a conservative estimate of cumulative impact assuming expeditious implementation of State goals to replace all diesel fuels.

* Phillips 66 Project data calculated at 55,000 b/d feed, less than the 80,000 b/d feed capacity of the project.

Accounting for fuel yields on refining targeting renewable diesel²²² and typical feed and fuel densities noted in Table 3, at its 55,000 b/d processing capacity the Project could produce approximately 1.86 million gallons per day of renewable diesel, potentially resulting in crude

²²² Pearlson et al., 2013.

refining for export of the equivalent petroleum distillates volume if current patterns continue. State default emission factors for full fuel chain "life cycle" emissions associated with the type of renewable diesel proposed²²³ account for a range of potential emissions from lower ("residue") to higher ("crop biomass") emission feeds, also shown in the table. The net emission shifting impact of the Project based on this range of state emission factors could thus be approximately 3.96 to 5.72 million metric tons (Mt) of CO₂e emitted per year. Table 3. Those potential Project emissions would exceed the 10,000 metric tons per year (0.01 Mt/year) significance threshold in the DEIR by 395 to 571 *times*.

VII. THE DEIR FAILS TO ADEQUATELY DISCLOSE AND ANALYZE THE PROJECT'S AIR QUALITY IMPACTS

As discussed in Section III above, the DEIR is fatally flawed for having chosen a baseline that assumes an operating crude oil refinery rather than actual current conditions, in which the refinery is shut down with no plan or intention to continue processing crude oil. That flaw renders the entire analysis of air emissions in the DEIR inadequate, because the conclusion that the Project "would result in an overall reduction of local criteria pollutant emissions" (DEIR at 4.3-60) is based on a faulty premise and must be revisited; as must all air quality health impacts analysis and cumulative impacts analysis that is grounded in this conclusion. Starting from a zero baseline, the analysis should determine the increase in pollutants associated with operating the Project over current shutdown conditions. Since the calculations in the DEIR indicate that such emissions will be significant and unavoidable using the BAAQMD thresholds of significance, and the DEIR should further identify mitigation measures to address those emissions.

Even aside from the faulty baseline, however, the DEIR analysis of air quality impacts suffers from three major flaws described in the subsections below. First, for reasons discussed in Section VI concerning GHG emissions, the analysis fails to take into account the widely differing air emissions impact associated with both different feedstocks and different product slates. Those differences should have been factored in the reasonable worst case scenario analysis to address uncertainty as to the feedstocks that will be used, *see* Sections II and IV, as well as any other feedstock scenarios appropriate to the analysis. Second, the DEIR air quality analysis systematically excludes acute exposures to short-term episodic facility emissions in nearby communities from consideration, even though the Project risks increasing acute exposures associated with flaring. And third, the DEIR odor analysis of new malodorous feedstock in new and repurposed facilities adjacent to vulnerable populations is too cursory and incomplete to approach sufficiency.

A. The DEIR Air Impacts Analysis Fails to Take Into Account Varying Air Emissions from Different Feedstocks and Crude Slates

Section VI demonstrates that GHG emissions vary significantly with differing feedstocks and product slates. For these same reasons and others, emissions of multiple air pollutants vary with feedstock and product slate as well. Processing a different type of oil – including crude feedstock oils – can increase processing emissions in several ways. It can introduce

²²³ Low Carbon Fuel Standard Regulation, CCR §§ 95484–95488, tables 2, 4, 7-1, 8 and 9.

contaminants that escape the new feed and pass through the refinery into the local environment. It can require more severe, more energy-intensive processing that burns more fuel per barrel, increasing combustion emissions from the refinery. At the same time, processing the new feed can change the chemistry of processing to create new pollutants as byproducts or create polluting byproducts in greater amounts.

There are also potential increases in emissions of air pollutant emissions - including nitrogen oxides, particulate matter, sulfur dioxide, and polycyclic aromatic hydrocarbons, among others - associated with fossil fuel combustion and energy demand in proposed Project processes. The emissions result not only from the more intense hydrogen demands associated with certain feedstocks (see Section VI), but from the higher energy demands in addition to hydrogen reforming associated with processing certain types of feedstocks. More contaminated or difficult to pretreat feeds may require more energy in the proposed new feed pretreatment plant. Feeds that are more difficult to process may require more recycling in the same hydrotreater or hydrocracker, such that processing each barrel of fresh feed twice, for example, may double the load on pumps, compressors, and fractionators at that process unit, increasing the energy needed for processing. As another example further downstream in the Refinery, feeds that yield more difficult to treat combinations of acids and sour water as processing byproducts may need additional energy for pretreatment to prevent upsets in the main wastewater treatment system. Feeds that require more energy-intensive processing of this nature may increase combustion emissions of an array of toxic and smog-forming pollutants, including but not limited to those noted above.

Additionally, contaminants in the feedstocks themselves can be released during processing, adding to the air emissions burden. Fish oils can be contaminated with bioaccumulative lipophilic toxins such as polychlorinated biphenyls, dioxins, and polybrominated diphenyl ethers, which could be released from processing at 48,000 barrels per day in cumulatively significant amounts. So-called "brown grease" collected from sewage treatment plants – another potential feedstock whose use has not been ruled out - can adsorb and concentrate lipophilic toxic chemicals from across the industrial, commercial and residential sewerage collection systems—disposal and chemical fate mechanisms similar to those that have made such greases notoriously malodorous.

B. The DEIR Fails to Assess the Likelihood of Increased Air Pollution Associated With the Increased Likelihood of Process Upsets ²²⁴

As discussed in Section V, running biofuel feedstocks risks increasing the likelihood of process upsets and flaring incidents at the Refinery. Any such incident will result release of in a significant volume of uncontrolled air emissions. Accordingly, the DEIR should have addressed those emissions, and ways to mitigate them, as part of its air quality impacts analysis. Specifically, the DEIR should have determined whether increased flaring is likely as a result of HEFA processes (per Section V); described the air impacts associated with flaring (which are

²²⁴ Supplemental information in support of this analysis is provided in Karras 2021c accompanying this comment, in the section entitled "Air Quality and Hazard Release Impacts of Project Flaring that Available Evidence Indicates Would be Significant are Not Identified, Evaluated, or Mitigated in ihe DEIR."

acute rather than chronic); and evaluated the possibility of limits on certain feedstocks prone to cause flaring as a mitigation measure.

1. The DEIR Did Not Describe the Air Quality Impacts of Flaring

Although the inclusion of repurposed refinery flare systems in the Project clearly anticipates their use, and serious local air impacts have long been known to occur as a result of refinery flares, the DEIR simply does not describe those impacts. This is a fatal flaw in the DEIR independently from its flawed baseline analysis since, as discussed in Section V, the Project is likely to increase process upset incidents at the Refinery.

The County cannot argue that data for this essential impact description were not available. As described in a recent technical report:

Causal analysis reports for significant flaring show that hydrogen-related hazard incidents occurred at [the Phillips 66 Rodeo and Marathon Martinez] refineries a combined total of 100 times from January 2010 through December 2020 ... on average, and accounting for the Marathon plant closure since April 2020, another hydrogen-related incident at one of those refineries every 39 days.

... Sudden unplanned or emergency shutdowns of major hydro-conversion of hydrogen production plants occurred in 84 of these 100 reported safety hazard incidents. Such sudden forced shutdowns of *both* hydro-conversion and hydrogen production plants occurred in22 of these incidents. ... In four of these incidents, consequences of underlying hazards included fires in the refinery.

... Refinery flares are episodic air polluters. Every time the depressurization-to-flare safeguard dumps process gases in attempts to avoid even worse consequences, that flaring is uncontrolled open-air combustion. Flaring emits a mix of toxic and smog forming air pollutants—particulate matter, hydrocarbons ranging from polycyclic aromatics to methane, sulfur dioxide, hydrogen sulfide, and others—from partially burning off enormous gas flows. Most of the 100 incidents described above flared more than two million cubic feet of vent gas each, and many flared more than ten million.

... In 2005, flaring was linked to episodically elevated local air pollution by analyses of a continuous, flare activity-paired, four-year series of hourly measurements of the ambient air near the fence lines of four Bay Area refineries. By 2006, the regional air quality management district independently confirmed the link, assessed community-level impacts, and set environmental significance thresholds for refinery flares. These same significance thresholds were used to require [Phillips 66 and Marathon and previous owners of the Rodeo and Martinez refineries] to report the hazard data described above.

... Thus, each of the hundred hydrogen-related flaring incidents since 2010 at the P66 Rodeo and MPC Martinez refineries discussed above *individually* exceeded a relevant environmental significance threshold for air quality.²²⁵

²²⁵ Karras, 2021a.

2. The DEIR Failed to Describe the Impact of Feedstock Switching on Flaring

With regard to causal factors for flaring, the allusion in the DEIR to reduced process hazards because the Project would result in fewer onsite equipment units where incidents could occur is specious. The hundred incidents described above include only those in which the type of process units to be repurposed for the Project *and* hydrogen-related hazards were causal factors in an environmentally significant flaring incident.²²⁶ Had the DEIR evaluated the same data source, ²²⁷ the County could have found that the same refining processes that would be repurposed for the Project dominate the historic refinery flaring pattern.

All of the uniquely pronounced inherent process hazards resulting from converting crude refineries to HEFA refineries—which is what the Project proposes—result in *designing* HEFA conversions to dump process gas to flares when such hazards arise. The increased exothermic runaway reaction hazard due to more hydrogen-intensive processing of HEFA refining than crude refining, and associated need for upgraded capacity for rapid depressurization to flares, are noted industry-wide.^{228 229} Failure to evaluate this potential for Project HEFA refining to increase the frequency of refinery flaring compared with historic crude refining at the site is a major deficiency in the DEIR flaring analysis. Had the DEIR performed this essential evaluation, the County could have found that:

[D]espite current safeguards, hydro-conversion and hydrogen-related process safety hazards which their HEFA conversion projects could worsen contribute to significant flaring incidents at the P66 Rodeo and MPC Martinez refineries frequently. ... [S]witching to HEFA refining is likely to further increase the frequency and magnitude of these already-frequent significant process hazard incidents ...

... The increased risk of process upsets associated with HEFA processing concomitantly creates increased risk to the community of acute exposures to air pollutants ... Therefore, by prolonging the time over which the frequent incidents continue, and likely increasing the frequency of this significant flaring, repurposing refineries for HEFA processing can be expected to cause significant episodic air pollution."²³⁰

3. The DEIR Failed to Evaluate the Likelihood of Increased Flaring

Refinery flare incidents can be prevented by the same measures that can prevent the catastrophic explosion and fire incidents which flares are designed to (partially) mitigate; removing the underlying causes of those hazards. From and an environmental health and safety perspective, this is the crucial fact about flaring. In this regard, its incomplete and misleading allusion to flaring as merely a way to make refining safer, which incidentally emits some

²²⁶ Karras, 2021a.

²²⁷ BAAQMD *Causal Analysis Reports for Significant Flaring;* Bay Area Air Quality Management District: San Francisco, CA. Reports submitted by Phillips and former owners of the Phillips 66 San Francisco Refinery at Rodeo, and submitted by Marathon and formers owners of the Marathon Martinez Refinery, pursuant to BAAQMD Regulation 12-12-406. *See* Karras, 2021c, Attachment 33.

²²⁸ van Dyk et al., 2019.

²²⁹ Chan, 2020.

²³⁰ Karras, 2021a.

pollutants, obscures a third fatal flaw in the DEIR flaring analysis: it failed to address the elective processing of feedstock types that would cause preventable flaring.

Refinery flares are designed and permitted for use only in emergencies, the only exception being limited to when unsafe conditions are both foreseeable *and* unavoidable.²³¹ Here in the Bay Area, preventable refinery flaring is an unpermitted activity that contravenes air quality policy and law.²³² The DEIR fails to address this fact. The DEIR declines to expressly define or limit the feedstocks that will be used, without addressing the issue that electing to process some of those feeds rather than others could result in more frequent environmentally significant flaring impacts, contrary to air quality policy and law.

Had the DEIR addressed this issue, the County could have found that:

- A portion of the range of potential HEFA feedstocks, including soybean oil, distillers corn oil and most other crop oils, have relatively higher process hydrogen requirements than other potential feedstocks for Project biofuel refining;²³³
- Electing to process feedstocks in that high process hydrogen demand category would release more heat during processing, thereby increasing the frequency of process temperature rise hazard incidents and hence environmentally significant flaring;²³⁴ and
- The resultant more frequent flaring from electing a feedstock which unnecessarily intensified underlying flaring would be preventable since another feedstock would reduce flaring frequency in accordance with air quality policy and law, and consequently, the proposed Project flaring could result in significant impacts.

C. The DEIR Fails to Address Acute Episodic Air Pollution Exposures

Although as described in the previous subsection flaring causes acute episodic air pollution exposure and will increase in frequency with the Project, the DEIR systematically excludes acute exposures to short-term episodic facility emissions associated with flaring and process upsets from consideration. The facility air permit itself specifies hourly and daily as well as annual emission limits.²³⁵ Yet the DEIR it erroneously conflates these acute and chronic exposure impacts, drawing numerous conclusions that facility emission impacts of the Project are less than significant based on average rates of emission from continuous sources alone; and fails entirely to disclose or address episodic emissions from potentially increased flaring, and their potential health impact.

Potential air quality impacts associated with acute exposures to short-term episodic emissions from the refining facilities are systematically excluded from DEIR consideration. The DEIR fails to evaluate or address episodic emissions from flaring, as discussed directly above in

²³¹ The limited exception does not apply where, as here, known measures to avoid flaring can be taken before unsafe conditions that result in flaring become locked into place, e.g., the inherently safer processing systems and designs are identified and can be implemented during construction or implementation.

²³² BAAQMD Regulation 12, Rule 12.

²³³ Karras, 2021a.

²³⁴ Karras, 2021a.

²³⁵ Major Facility Review Permit Issued To: Phillips 66–San Francisco Refinery, Facility #A0016, Dec. 27, 2018.

subsection B. Even for criteria air pollutants, the DEIR calculations and estimates fail to account for combined effects of site-specific source, geographic, demographic, and climatic factors that worsen episodic air pollutant exposures locally. The DEIR further relies upon incomplete local air monitoring, which could not and did not measure incident plumes. Local air monitoring also excludes from measurement many air pollutants associated with upsets and flaring. Polycyclic aromatic hydrocarbons, carbonyl sulfide, dioxins, and even particulate matter less than 2.5 microns diameter (PM_{2.5}), for example, are not measured continuously in local air samples, such that episodically elevated one-minute or one-hour exposure levels during flaring remain unmeasured for these and many other chemicals known or suspected to be released by flares. The DEIR's error of conflating impacts of acute and chronic air pollutant exposures obscures its failure to consider acute exposure to short-term episodic emissions. In most cases, its comparisons underlying those conclusions appear to be grounded in no acute exposure or episodic emission data at all.²³⁶

Additionally, the DEIR failed to consider potential means of mitigating the impact of flaring associated with HEFA processes by limiting uses of the feedstocks most prone to causing excess flaring. As discussed in Section VI, a portion of the range of potential HEFA feedstocks, including soybean oil, distillers corn oil and most other crop oils, have relatively higher process hydrogen requirements than other potential feedstocks for Project biofuel refining;²³⁷Processing feedstocks with higher hydrogen demand releases more heat during processing, thereby increasing the frequency of process temperature rise hazard incidents -- and hence environmentally significant flaring.²³⁸ The DEIR should therefore have considered the possibility of capping or prohibiting the use of feedstocks with higher risk of causing flaring incidents.

The DEIR must therefore be revised to include a disclosure and assessment of the likelihood of increased flaring associated with the proposed HEFA process, including reasonable worst case scenario analysis taking into account variation in flaring associated with different feedstocks. It must then calculate the increased acute air pollution associated with such flaring, and identify potential mitigation measures to diminish the likelihood of flaring associated with the HEFA process, including feedstock limitations.

D. The DEIR Fails to Adequately Address Potential Odors from the Project

Phillips 66 engineered some odor management measures such as leak seals and carbon cannister treatment of odorous streams associated with the Project. The DEIR concludes that the Project would result in a significant odor impact despite the engineered measures, but concludes that odor impacts could be reduced to less than significant through use of an "Odor Management Plan" -- to be developed, implemented, maintained, monitored and updated as necessary *after* Project approval. 4.3-80 - 81. The DEIR does not discuss the effectiveness or pitfalls observed from prior or existing use of odor management plans at the Refinery.

The DEIR's reliance on a not-yet-developed odor management plan is misplaced. In the first instance, such a plan runs afoul of the CEQA requirement that "Formulation of mitigation

²³⁶ Karras 2021c.

²³⁷ Karras, 2021a.

²³⁸ Karras, 2021a.

measures shall not be deferred until some future time." CEQA Guidelines § 15126.4(a)(1)(B); and that "Mitigation measures must be fully enforceable through permit conditions, agreements, or other legally-binding instruments." *Id.* at § 15126.4(a)(2).

Additionally, as a substantive matter, the DEIR does not adequately describe how the proposed mitigation would be effectively at reducing impacts to non-significance – specifically, how "odors similar to an animal and/or food processing facility unless properly managed" would be eliminated in the context of an open-plan petroleum refinery surrounded by densely packed communities. Moreover, any proposed mitigation – and description of its effectiveness – must account for the fact that the DEIR does not preclude use of any type of feedstock – meaning that a reasonable worst case scenario analysis must account for the possibility that highly odorous feedstocks will be used. The DEIR states that Project feedstocks could include "FOG" (fats, oils and grease) – a category of feedstock includes a particular type of "brown grease." Brown grease is a highly malodorous oil and grease extracted from the grease traps, "mixed liquor" (microbial cultures with their decomposition products) and "biosolids" (sewage sludge) in publicly owned treatment works, commonly known as sewage plants, originating in the broad mix of residential, commercial and industrial waste water connections to sewage plants across urban and suburban landscapes.

The DEIR fails to adequately describe or account for malodorous properties of brown grease and other types of FOG in its impact evaluation. The DEIR further fails to provide a sufficiently detailed description and analysis of the infrastructure from which the odors may be emitted – including the transport system, the storage system, and the pre-processing system – including design specifications, potential points of atmospheric contact, and the proximity to adjacent populations. Such analysis is crucial to supporting the DEIR conclusions that an odor management plan will reduce the impact to less than significant.

VIII. THE DEIR'S ASSESSMENT OF ALTERNATIVES TO THE PROJECT IS INADEQUATE

Analysis of project alternatives, together with identification of mitigation, form the "core of the EIR." *Jones v, Regents of University of California* (2010), 183 Cal.App.4th 818, 824-25. That core is deeply flawed here. First, the document fails to consider a "no project" alternative that realistically represents conditions without the project, since those conditions do not include an operating refinery. Second, the alternatives analysis artificially conflates numerous alternatives that can and should have been considered collectively as a means to reduce Project impacts. Second, while the analysis appropriately includes an electrolytic hydrogen alternative, the analysis of that alternative omits important criteria that should have been considered. Finally, the DEIR defines the Project in a manner that is so overly narrow as to skew the analysis of alternatives.

A. The DEIR Does Not Evaluate A Legally Sufficient No-Project Alternative

In examining a range of alternatives, an EIR is required to include a "no project" alternative to facilitate assessment of the impact of the remaining alternatives. "The purpose of describing and analyzing a no project alternative is to allow decisionmakers to compare the impacts of approving the proposed project with the impacts of not approving the proposed

project. ..." CEQA Guidelines § 15126.6(e)(1). "The 'no project' analysis shall discuss the existing conditions ... as well as what would be reasonably expected to occur in the foreseeable future if the project were not approved, based on current plans and consistent with available infrastructure and community services. ..." CEQA Guidelines, § 15126.6, subd. (e)(2). It is essential that the "no project" alternative accurately reflect the status quo absent the project, to ensure that the baseline for measuring project impacts is not set too high, which would artificially diminish the magnitude of Project impacts. *See Ctr. for Biological Diversity v. Dep't of Fish & Wildlife* (2014), 234 Cal.App.4th 214, 253 (citation omitted) (emphasis in original) ("a no project alternative in an EIR 'provides the decision makers and the public with specific information about the environment if the project is not approved. It is a factually based forecast of the environmental impacts of *preserving the status quo*. It thus provides the decision makers with a base line against which they can measure the environmental advantages and disadvantages of the project and alternatives to the project."").

For reasons explained in Section II, concerning the project baseline, the DEIR incorrectly identified the no project alternative as the scenario where crude oil operations would return to historic rates, continuing crude oil processing operations indefinitely at historic levels. DEIR at 5-11. *See* DEIR at 3-37 (stating, in the discussion of baseline, that if the Project is not implemented, petroleum crude refining would continue at historic rates because Refinery throughputs will rebound from the lower level during the COVID-19 pandemic to "more typical" historic throughputs). Yet the DEIR provides no substantial evidence to support this conclusion. It is an unsubstantiated assumption contradicted by mountains of evidence – much of it provided in the Scoping Comments and even more provided in these Comments – that Phillips 66 will be winding down petroleum refining operations at the Refinery regardless of whether the Project is approved. It is imperative, to ensure a rational alternatives analysis, that the County include a no project alternative that is grounded in reality.

The validity of the no project alternative analysis is further undercut by the DEIR's faulty consideration of near-term future fuel market demand, as described in the next subsection. The Refinery cannot meet refined products demand (to the extent it exists) if it cannot access the feedstock to make those products in the first place – as is clearly the case. This fact undercuts the DEIR analysis of the no project alternative to the extent that analysis assumes, without considering feedstock supply, that the Refinery is positioned on a foregoing basis to meet purported product demand.

A no project alternative reflecting the reality of the Refinery's closure would have found multiple significant impacts where the DEIR currently finds no significant impact or, in some cases, reduced impact. If, in fact, the Santa Maria refinery and/or the Rodeo refinery are being forced by current circumstances to limit or cease crude oil production, then no project conditions would likely have less environmental impact than any Project alternative. It is thus crucial that the County assess complete information concerning the volume of crude that would be refined at the Santa Maria and Rodeo facilities – if, indeed, any would be – in the absence of the Project.

Additionally, a no project alternative reflecting that reality would need to address the need to decommission the refinery and address any hazardous waste issues, as discussed in Section X. The DEIR needs to confront the reality that if the Project is not approved, a massive – and environmentally impactful – cleanup effort will be required to address the decades of hazardous contamination fouling the idled site.

B. The DEIR Analysis Rejecting Three Reduced Production Alternatives is Grounded in Erroneous Assumptions Regarding Petroleum Fuel Markets

The DEIR dismissed from consideration three alternatives involving decommissioning or production reduction: the alternative of shutting down the Santa Maria facility but continuing operations at the Refinery (DEIR at 5 - 3 - 4), the alternative of eliminating gasoline blending (DEIR at 5 - 4), and the full decommissioning alternative (DEIR at 5 - 9 - 10). These alternatives, as well as the no project alternative, were evaluated and rejected based on stated assumptions regarding crude oil supply and refined products markets. The analysis rejecting these alternatives is consistently grounded in an assumption that the Refinery is essential to meet regional refined product demand.

Specifically, the DEIR hypothesizes that decommissioning would lead to transportation fuels supply/demand imbalances which "would likely lead to regional shortages that could trigger imports and higher prices" in the "near term." DEIR at 5-9. Similarly, in rejecting the decommissioning of the Santa Maria facility only alternative, the DEIR states, "Phillips 66 is a critical supplier of transportation fuels to the region," and that "any reduction in regional supply will result in increased imports of gasoline from other areas." DEIR at 5-3 – 4. It further posits that rebounding post-COVID fuels demand, coupled with the closure of the Marathon Martinez refinery, could "reduce regionally-available supply to meet regional demand" for petroleum fuels if the Santa Maria facility closes (DEIR at 5-3) and "would likely lead to regional shortages that could trigger imports and higher prices" if the Rodeo facility closes. DEIR at 5-9. Additionally, the DEIR states, in rejecting the elimination of gasoline blending, that "Phillips 66 is a critical supplier of conventional transportation fuels to the region."

These statements regarding fuels supply and demand, however, are demonstrably rebutted by facts – undercutting the entire logic of its rejection of the three reduced production alternatives. While the DEIR asserts a concern that in the rejected alternative scenarios, near-future demand for refined products will exceed supply in the fuels market, leading to increased imports and attendant gas price spikes, and references generally a "tightening" of the supply/demand balance for diesel (DEIR at 5-9), it nowhere supports a conclusion that any of the decommissioning or reduction alternatives would actually create a supply shortage. In fact, available evidence indicates the exact opposite. Comparisons of fuels supply, demand, and statewide fuels refining spare capacity while meeting demand and exporting fuels strongly suggest that currently available refining capacity is fully sufficient to meet demand even without both the Refinery and the shuttered Marathon Martinez refinery. This error in the DEIR skews its analysis of the educed production alternatives. This error must be corrected both to accurately describe the no project alternative, and to support a reasonably accurate impacts comparison between alternatives.

It bears note at the outset that under existing conditions, the crucial barrier which limits petroleum fuels movements, hence affecting supply and price, is mountainous terrain between West Coast (PADD 5) and other U.S. refining districts. This leads to normal supply movements between the Bay Area and Southern California²³⁹ -- which the DEIR misleading labels

²³⁹ USEIA, 2015. *West Coast Transportation Fuels Markets;* U.S. Energy Information Administration: Washington, D.C. https://www.eia.gov/analysis/transportationfuels/padd5

"imports." In fact, as a consequence of this geographic constraint, the existing condition of refinery overcapacity results in both California and the West Coast of the U.S. overall being net *exporters* of gasoline and diesel to other states and nations.²⁴⁰ This fact calls deeply into question the DEIR's hypothesis that the Refinery is central to local supply.

And in fact, California's on-the-ground experience with supply and demand before and during the pandemic years undercuts the DEIR hypothesis of the necessity of the Refinery for meeting in-state demand. Available supply and demand data show that even after the closure of the Marathon Martinez refinery in 2020, and even after demand for refined products rebounded in 2021 from their early pandemic decline, California refineries have operated significantly under capacity.

California and the West Coast (Petroleum Administration Defense District 5) fuels demand data are summarized in Tables 4 and 5.

	Fuel volu	mes in million	s of gallons (MM gal.) per me	onth
	Demand	Pre-CO∖	/ID range (201	2–2019)	Comparison of 2021 data with
	in 2021	Minimum	Median	Maximum	the same month in 2012–2019
Gasoline (M	M gal.)				
Jan	995	1,166	1,219	1,234	Below pre-COVID range
Feb	975	1,098	1,152	1,224	Below pre-COVID range
Mar	1,138	1,237	1,289	1,343	Below pre-COVID range
Apr	1,155	1,184	1,265	1,346	Approaches pre-COVID range
May	1,207	1,259	1,287	1,355	Approaches pre-COVID range
Jun	1,196	1,217	1,272	1,317	Approaches pre-COVID range
Jul	1,231	1,230	1,298	1,514	Within pre-COVID range
Jet fuel (MM	gal.)				
Jan	10.74	9.91	11.09	13.69	Within pre-COVID range
Feb	10.80	10.13	11.10	13.58	Within pre-COVID range
Mar	13.21	11.23	11.95	14.53	Exceeds pre-COVID median
Apr	13.84	10.69	11.50	13.58	Exceeds pre-COVID range
May	15.14	4.84	13.07	16.44	Exceeds pre-COVID median
Jun	17.08	8.67	12.75	16.80	Exceeds pre-COVID range
Jul	16.66	11.05	13.34	15.58	Exceeds pre-COVID range
Diesel (MM g	gal.)				
Jan	203.5	181.0	205.7	217.8	Within pre-COVID range
Feb	204.4	184.1	191.9	212.7	Exceeds pre-COVID median
Mar	305.4	231.2	265.2	300.9	Exceeds pre-COVID range
Apr	257.1	197.6	224.0	259.3	Exceeds pre-COVID median
May	244.5	216.9	231.8	253.0	Exceeds pre-COVID median
Jun	318.3	250.0	265.0	309.0	Exceeds pre-COVID range
Jul	248.6	217.8	241.5	297.0	Exceeds pre-COVID median

Table 4. California Taxable Fuel Sales Data: Return to Pre-COVID Volumes

Data from net taxable fuel sales (CDTFA, various years). Pre-COVID statistics are for the same month in 2012–2019. Multiyear comparison range shown accounts for interannual variability in fuels. Jet fuel totals exclude fueling in California for fuels presumed to be burned outside the state during interstate and international flights.

²⁴⁰ USEIA, 2015.

	Fuel volun	nes in millions	of barrels (M	IM bbl.) per moi	nth
	Demand	Pre-CO∖	/ID range (20 ²	10–2019)	Comparison of 2021 data with
	in 2021	Minimum	Median	Maximum	the same month in 2010–2019
Gasoline (MM	l bbl.)				
Jan	38.59	42.31	45.29	49.73	Below pre-COVID range
Feb	38.54	40.94	42.75	47.01	Below pre-COVID range
Mar	45.14	45.23	48.97	52.53	Approaches pre-COVID range
Apr	44.97	44.99	47.25	50.20	Approaches pre-COVID range
May	48.78	46.79	49.00	52.18	Within pre-COVID range
Jun	48.70	45.61	48.14	51.15	Exceeds pre-COVID median
Jul	50.12	47.33	49.09	52.39	Exceeds pre-COVID median
Jet fuel (MM	bbl.)				
Jan	9.97	11.57	13.03	19.07	Below pre-COVID range
Feb	10.35	10.90	11.70	18.33	Below pre-COVID range
Mar	11.08	11.82	13.68	16.68	Below pre-COVID median
Apr	11.71	10.83	13.78	16.57	Within pre-COVID range
May	12.12	12.80	13.92	16.90	Approaches pre-COVID range
Jun	14.47	13.03	14.99	17.64	Within pre-COVID range
Jul	15.31	13.62	15.46	18.41	Within pre-COVID range
Diesel (MM b	bl.)				
Jan	15.14	12.78	14.41	15.12	Exceeds pre-COVID range
Feb	15.01	12.49	13.51	15.29	Exceeds pre-COVID median
Mar	17.08	14.12	15.25	16.33	Exceeds pre-COVID range
Apr	15.76	14.14	14.93	16.12	Exceeds pre-COVID median
May	16.94	15.11	15.91	17.27	Exceeds pre-COVID median
Jun	14.65	14.53	16.03	16.84	Within pre-COVID range
Jul	16.94	15.44	16.40	17.78	Exceeds pre-COVID median

Table 5. West Coast (PADD 5) Fuels Demand Data: Return to Pre-COVID Volumes

Data for "Product Supplied" from *West Coast (PADD 5) Supply and Disposition,* (USEIA, various years). Product Supplied approximately represents demand because it measures the disappearance of these fuels from primary sources, i.e., refineries, natural gas processing plants, blending plants, pipelines, and bulk terminals. PADD 5 includes AK, AZ, CA, HI, NV, OR, and WA. Pre-COVID statistics are for the same month in 2010–2019. This multiyear comparison range accounts for interannual variability in fuels demand.

These tables show that demand for refined products rebounded to pre-COVID levels in 2021. In California, from April through June 2021 taxable fuel sales approached the range of interannual variability from 2012–2019 for gasoline and reached the low end of this pre-COVID range in July, while taxable jet fuel and diesel sales exceeded the maximum or median of the 2012–2019 range in each month from April through July of 2021. *See* Table 4. Similarly, West Coast fuels demand in April and May 2021 approached or fell within the 2010–2019 range for gasoline and jet fuel and exceeded that range for diesel. In June and July 2021 demand for gasoline exceeded the 2010–2019 median, jet fuel fell within the 2010–2019 range, and diesel fell within the 2010–2019 range or exceeded the 2010–2019 median. *See* Table5.

Yet throughout this rebound, petroleum refining remained shuttered at the Marathon Martinez refinery with no plans to restart. Nonetheless, California and West Coast refineries supplied the rebound in fuels demand *while running well below capacity*, as summarized in Tables 6 and 7.

barrel (oil): 4	2 U.S. gallons	barrels/calendar day: see table caption below			
Four-week period	Calif. refinery crude input (barrels/day)	Operable crude capacity (barrels/calendar day)	Capacity utilized (%)		
12/26/20 through 01/22/21	1,222,679	1,748,171	69.9 %		
01/23/21 through 02/19/21	1,199,571	1,748,171	68.6 %		
02/20/21 through 03/19/21	1,318,357	1,748,171	75.4 %		
03/20/21 through 04/16/21	1,426,000	1,748,171	81.6 %		
04/17/21 through 05/14/21	1,487,536	1,748,171	85.1 %		
05/15/21 through 06/11/21	1,491,000	1,748,171	85.3 %		
06/12/21 through 07/09/21	1,525,750	1,748,171	87.3 %		
07/10/21 through 08/06/21	1,442,750	1,748,171	82.5 %		
08/07/21 through 09/03/21	1,475,179	1,748,171	84.4 %		
09/04/21 through 10/01/21	1,488,571	1,748,171	85.1 %		
10/02/21 through 10/29/21	1,442,429	1,748,171	82.5 %		

Table 6. Total California Refinery Capacity Utilization in Four-week Periods of 2021.

Total California refinery crude inputs from CEC Fuel Watch, various dates. Statewide refinery capacity as of 1/1/21, after the Marathon Martinez refinery closure, from USEIA, 2021a. Capacity in barrels/calendar day accounts for down-stream refinery bottlenecks, types and grades of crude processed, operating permit constraints, and both scheduled and unscheduled downtime for inspection, maintenance, and repairs.

Statewide, four-week average California refinery capacity utilization rates from March 20 through August 6, 2021 ranged from 81.6% to 87.3% (Table 3), similar to those across the West Coast, and well below maximum West Coast capacity utilization rates for the same months in 2010–2019 (Table6). Moreover, review of Table 6 reveals 222,000 b/d to more than 305,000 b/d of spare California refinery capacity during this period when fuels demand rebounded.

	Capacity Utilized	Pre-COVID r	ange for same month i	in 2010–2019
Month	in 2021	Minimum	Median	Maximum
January	73.3 %	76.4 %	83.7 %	90.1 %
February	74.2 %	78.2 %	82.6 %	90.9 %
March	81.2 %	76.9 %	84.8 %	95.7 %
April	82.6 %	77.5 %	82.7 %	91.3 %
May	84.2 %	76.1 %	84.0 %	87.5 %
June	88.3 %	84.3 %	87.2 %	98.4 %
July	85.9 %	83.3 %	90.7 %	97.2 %
August	87.8 %	79.6 %	90.2 %	98.3 %
September	NR	80.4 %	87.2 %	96.9 %
October	NR	76.4 %	86.1 %	91.2 %
November	NR	77.6 %	85.3 %	94.3 %
December	NR	79.5 %	87.5 %	94.4 %

Table 7. West Coast (PADD 5) Percent Utilization of Operable Refinery Capacity.

NR: Not reported. Utilization of operable capacity, accounting for downstream refinery bottlenecks, types and grades of crude processed, operating permit constraints, and both scheduled and unscheduled downtime for inspection, maintenance, and repairs, from USEIA, 2021b. PADD 5 includes AK, AZ, CA, HI, NV, OR, and WA. Pre-COVID data for the same month in 2010–2019. 2021 data account for Marathon Martinez closure.

Thus, spare California refining capacity during this period when fuels demand increased to reach pre-COVID levels and crude processing at the Marathon Martinez refinery remained shut down (222,000–305,000 b/d) *exceeded the total 120,200 barrel per calendar day crude capacity of the refinery*.²⁴¹ Other refiners could have used that idled capacity to meet this temporary surge in demand and reduction in supply, and would have been incented to do so, had the hypothesized market tightening necessitated it. Yet that is not what actually happened.

In fact, existing conditions—namely idled crude refining assets during the current surge in petroleum fuels demand—show that the unsupported hypothesis of a supply-demand imbalance which threatens to cause local fuel price spikes from greatly increased imports hypothesized in the DEIR is both unsupported and, in the recent demand surge, false. Thus, the DEIR analysis rejecting reduced production alternatives lacks valid factual support.

C. The DEIR Inappropriately Dismissed the Hydrogen Generation Technology Alternative From Consideration

Splitting water with renewable power through electrolysis to produce zero-emission hydrogen (ZEH) is a proven technology that could be installed instead of repurposing fossil gas steam reforming hydrogen plants at the Refinery for the Project. Commentors raised multiple issues in support of ZEH in their Scoping Comment are incorporated herein and reasserted, as they remain relevant and were not addressed in the DEIR.

The DEIR dismisses from consideration the "hydrogen generation technology alternative" (herein ZEH) on the grounds of purported technical and economic infeasibility. DEIR at 5-7-9. This conclusion not supported by substantial evidence. It is not based on a facility-specific evaluation of feasibility,²⁴² but rather a back-of-the-envelope calculation of potential PG&E energy costs based on general information. DEIR 5-7, 5-33 – 34.

In the first instance, the County's rejection of the ZEH alternative is baseless in view of the fact that this same alternative was treated as feasible in the DEIR for the Marathon Martine project - a discrepancy that the County makes no attempt to reconcile. Nothing in either DEIR provides any reason why the Rodeo Renewed project differs in any way from the very similar Marathon project that would affect the feasibility of the hydrogen alternative. On that basis alone, the rejection of this alternative is unsupported by substantial evidence.

²⁴¹ Although USEIA labels the SFR refining site as Rodeo, both RF and SMF equipment capacities are included in the USEIA data table reporting the 120,200 b/cd operating and total operable capacity of the refinery. <u>See</u> USEIA, 2021a. *Refinery Capacity Data by Individual Refinery as of January 1, 2021;* U.S. Energy Information Administration: Washington, D.C. Accessed 3 Nov 2021. <u>https://www.eia.gov/petroleum/data.php</u>

²⁴² Commenter NRDC submitted a Public Records Act request to the County for analysis associated with the cost estimates at DEIR 5-7 – 5-8, and "[a]ny and all additional records pertaining to electrolysis or 'green' hydrogen at the Phillips 66 Rodeo refinery in connection with the Rodeo Renewed project and associated California Environmental Quality Act (CEQA) review." Letter dated November 9, 2021 from Ann Alexander to Lawrence Huang. In response, via the email from Lawrence Huang to Ann Alexander also dated November 9, 2021, the County provided no site-specific analysis concerning the rejected electrolysis hydrogen alternative.

Beyond that basic problem, the DEIR provides no valid basis for rejection of the electrolytic hydrogen alternative as infeasible. The document presents only general information concerning the technology and a statement of arithmetic that is both obvious and meaningless, without considering an array of factors that could make electrolytic hydrogen necessary and both economically and technically feasible.

ZEH should have been considered as an alternative in the DEIR for the reasons specified below.

1. <u>The DEIR Failed to Consider ZEH as Mitigation for Significant Project Impacts</u>

The Project has reasonable potential to result in multiple significant impacts that the DEIR did not identify and remain unmitigated in the DEIR, as explained in Section V. A major part of that impact would be accounted for by the proposed repurposing of fossil gas hydrogen steam reforming plants. See Sections II and VI. Project hydrogen plant emissions alone could reach approximately 1.5 to 2.3 million metric tons per year.²⁴³ ZEH would eliminate those steam reforming emissions. However, having failed to identify this significant potential GHG impact, the DEIR failed to propose mitigation for it. ZEH should have been considered as such a mitigation measure.

The cursory, general, and flawed cost analysis provided as a reason for rejecting ZEH was clearly focused solely on the cost to the Project proponent. As discussed in subsection 3, this is not a reasonable sole basis for rejecting a needed mitigation measure.

2. The DEIR Ignored a Critical Fact Supporting the Scalability of ZEH

The DEIR concluded that ZEH would be technically infeasible based on the large scale of total ZEH hydrogen production that would be needed by the Project. DEIR at 5-8. However, this conclusion is based on an implicit flawed assumption about how scalability of ZEH works – *i.e.*, that a demonstration at small scale does not support a conclusion of feasibility on a larger scale. That assumption does not reflect the nature of the technology, which makes ZEH inherently scalable. This is because ZEH consists of multiple smaller electrolyzer units, that can be stacked to the desired total production scale. Indeed, the DEIR recognizes the modular nature of ZEH technology, stating, "At this time, the largest electrolyzer in service is 20 MW ... meaning that approximately 37 units would need to be installed to supply the necessary amounts of hydrogen. Electrolysis projects similar in size to that requires for the Rodeo Refinery have been announced" *Id.* Yet without further analysis, and without consideration of the import of this modular construction for scalability, the DEIR concludes in the same paragraph of the same page that ZEH is "infeasible for both technical and financial reasons" – with the reason given that "[t]he scale of the electrolysis operation that would be required [exceeding] any facility that has been put into operation in the world." *Id.*

Indeed, as an example of a large PEM hydrogen facility, Shell plans to scale up the capacity of a proton exchange membrane (PEM) hydrogen electrolysis plant in Germany from the current 10 megawatts to 100 megawatts.²⁴⁴ Furthermore, Reed et al used a scale factor of 0.9

²⁴³ Karras, 2021a.

²⁴⁴ <u>https://www.shell.de/media/shell-media-releases/2021/shell-energy-and-chemicals-park-rheinland.html</u>

for projecting cost of larger central installations in their analysis of the costs of electrolysis hydrogen production. ²⁴⁵

3. The DEIR Rejected ZEH Based on Unsupported, Invalid and Biased Cost Analysis

The DEIR concluded that ZEH is financially infeasible without disclosing, evaluating, or apparently attempting virtually any of the elements of a valid cost analysis specific to the site and Project. A Public Records Act request from Commenter NRDC seeking information concerning the cost calculation turned up essentially no support for it.²⁴⁶

The DEIR did not identify the electrolysis technology or technologies to which its cost conclusion pertained. In fact, there are three types of electrolysis technology, each with its own capabilities, limitations, site footprint and costs.²⁴⁷ The DEIR also did not present any verified onsite power cost. Had it done so, the County might have found costs of self-generated wind or solar power may be as low and 2.6 cents per kilowatt-hour (kWh),²⁴⁸ thus lower than the \$120/MWh for third-party power at current utility rates the DEIR asserted. DEIR at 5-8. Moreover, the DEIR failed to disclose that crude refineries in California may contract with utilities for refinery-specific power sales as well as power purchases at potentially lower cost to refiners. Rather, the DEIR asserted that \$120/MWh power cost based, apparently, on general utility rates, without disclosing or evaluating the rate Phillips 66 actually pays for grid power.

It is particularly problematic that the DEIR relays ZEH capital cost estimates from Phillips 66 of \$0.75 billion to \$1.1 billion (DEIR at 5-8) without disclosing any attempt to verify that information, as noted above. Had it attempted a contemporary survey, the DEIR might have found current ZEH capital costs, which as expected are trending downward, of approximately \$500 to \$650 per kW²⁴⁹ -- which, again, would be lower, had the DEIR checked and found that available information, at approximately \$0.37 billion to \$0.48 billion.

Other cost data is generally available as well, and should have been considered by the County. Hydrogen companies, such as Nel Hydrogen, which has US operations, can provide estimated construction costs of a ZEH facility.²⁵⁰ Operating costs can also be readily determined based on the source of renewable energy, which can be from both an on-site solar facility and from the grid. The cost of the solar facility is minimal, with it being built on the refinery's contaminated property that cannot be used for other purposes. There is only the cost of installing the panels, and the maintenance cost is minimal. Furthermore, using green grid electricity will allow the flow of green energy to go both ways, with the ZEH being used to balance the grid

²⁴⁵ Reed et al, p. A-10..

²⁴⁶ Letter dated November 9, 2021 from Ann Alexander to Lawrence Huang. In response, via the email from Lawrence Huang to Ann Alexander also dated November 9, 2021.

²⁴⁷ Reed et al., 2020. Roadmap for the Deployment and Buildout of Renewable Hydrogen Production Plants in California; California Energy Commission Clean Transportation Project Final Project Report. Prepared for the Commission by U.C. Irvine Advanced Power and Energy Program. June 2020. CEC-600-2020-002.

²⁴⁸ Personal communication, Clair Brown and Greg Karras with Jeffrey Reed, U.C. Irvine Advanced Power and Energy Program, on Monday, 6 December 2021.

²⁴⁹ Id.

²⁵⁰ Typically brownfield construction costs 10% less that greenfield production, which is in line with using a factor of 0.9 to predict the cost of scaling up the modular ZEH.

during peak hours. The benefit of grid balancing is large and depends on the opportunity costs of grid balancing using batteries and gas peaker plants, both of which have high costs.

Furthermore, the DEIR failed to take into account cost scaling factors. Consequently, despite asserting the unprecedented scale of the Project ZEH need as a reason for rejecting ZEH as infeasible (DEIR at 5-8), the DEIR failed to disclose or evaluate this exactly opposite effect of scale: larger centralized ZEH installations, and especially brownfield installations, which would be the Project condition, are cheaper per kW installed than smaller installations. Even a cursory check by the DEIR could have informed the County that the hydrogen road map analysis the California Energy Commission and U.C. Irvine reported for state consideration of climate stabilization pathways applies a scaling factor of 0.9,²⁵¹ thus quantifying *reduced* incremental cost with increasing scale for the large-scale ZEH installation it asserts.

Additionally, the net costs (costs minus benefits) for the ZEH alternative is not even mentioned, with only the private costs assumed to be too high. In view of the very high GHG emissions and other air pollution from the legacy gray hydrogen facility, ZEH a major economic and social benefit. For this reason, the costs and benefits of the alternatives examined should have been evaluated not only in the context of project economics, but also the larger context of social costs. For example, the County can estimate the public health costs of the PM_{2.5} emissions from the hydrogen operations on people living nearby.²⁵² Because the Refinery is situated in a densely populated urban area, the health costs from the pollution caused by the hydrogen operation are very high, and the comparable health costs from ZEH are zero.

Finally, despite describing LCFS credits which would be available to the Project, the DEIR stacks the deck against ZEH by excluding costs to the refiner associated with forgoing those credits for ZEH-produced renewable fuels. It states that "the capital costs of hydrolysis technology make it financially infeasible compared to the steam reformation process currently employed at the Rodeo Refinery" (DEIR at 5-8), but ignores the LCFS debit costs of that fossil steam reforming. Had this analytical bias been absent, the DEIR could have found that, by eliminating the approximately 1.5 to 2.3 million metric tons of annual emissions cited above, with current and future LCFS credits of \$100 to \$200 per metric ton, ZEH could provide cost savings in the range of \$150 million to \$460 million annually, or \$1.5 billion to \$4.6 billion over ten years. These savings that the DEIR could have found exceed the likely-inflated ZEH capital cost of \$0.75 billion to \$1.1 billion that the DEIR reports from unverified refiner estimates. DEIR at 5-8.

The DEIR, however, failed to seek, disclose or evaluate any of this data and information. The analysis of the ZEH alternative should not only have found the alternative to be feasible, but in considering it should have evaluated the ways in which this alternative would mitigate the Project's significant impacts – as identified in these Comments but not addressed in the DEIR.

²⁵¹ Reed et al., 2020.

²⁵² Each 1 μg/m3 of PM2.5 that reaches 100,000 people living nearby causes 2.3 premature deaths annually. With a Value of a Statistical Life of \$10,000,000 estimated by the EPA in 2019, then causing each additional 2.3 deaths leads to a social cost of \$25M annually. Burnett R, Chen H, Szyszkowicz M et al. 2018; Global estimated of mortality associated with long-term exposure to outdoor fine particulate matter, PNAS 115 (38):9592-9597.

D. The DEIR Alternatives Analysis Artificially Separates Alternatives that are Not Mutually Exclusive

In addition to the (inappropriately characterized) no project alternative, the DEIR considered three additional alternatives in addition to the Project: the "reduced project" alternative, the "terminal only" alternative, and the "no temporary increase in crude oil" alternative. DEIR at 5-11 - 34. These alternatives were among those appropriate for consideration, as they are feasible means to reduce Project impacts. However, the DEIR presents no reason why two of these – the reduced project alternative and the no temporary increase alternative - were evaluated as separate options rather than collectively. Nothing about them is mutually exclusive: the Project could have been reduced in scale *and* completed without the no temporary increase in crude throughput over the wharf. The DEIR should therefore have either considered those two alternatives collectively in addition to separately, or else provided sufficient evidence and reasoning as to why this combined approach would not be feasible.

E. The Project Purpose is Defined in a Manner So Narrow as to Skew the Analysis of Alternatives

The Project objectives are drawn in an overly narrow fashion that may unfairly bias consideration of the green hydrogen alternative. The list of Project objectives in the DEIR twice references a goal of repurposing Refinery infrastructure ("convert existing equipment and infrastructure" and "repurpose and reuse the facility's existing equipment capacity"). DEIR at 3-22. However, framing the Objectives in this manner by nature weighs against any alternatives – such as the green hydrogen alternative – that would upgrade and replace heavily polluting refinery infrastructure while still allowing biofuel production to proceed. The fundamental goal of the Project is to manufacture biofuels; "repurposing" is merely a strategy by which Phillips 66 seeks to hold costs down. Why the company may for that reason consider repurposing economically advantageous, allowing every strategy to economize to rise to the level of a fundamental Project objective would bias the CEQA process in favor of the cheapest and most polluting project objectives in such an "artificially narrow" fashion violates CEQA. *North Coast Rivers Alliance v. Kawamura* (2015), 243 Cal.App.4th 647, 654.

IX. THE DEIR'S ANALYSIS OF CUMULATIVE IMPACTS WAS DEFICIENT

CEQA requires a cumulative project impacts analysis because "the full environmental impact of a proposed ... action cannot be gauged in a vacuum." *Whitman v. Board of Supervisors* (1979) 88 Cal.App.3d 397, 408. Cumulative impacts refer to two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts. Guidelines §15355. The cumulative impact from several projects is the change in the environment which results from the incremental impact of the project when added to other closely related past, present, and reasonably foreseeable probable future projects. *Id.* The discussion of each type of cumulative impact in an EIR need only be proportional to the severity of the impact and the likelihood of its occurrence, Guidelines § 15130(b), but even an insignificant impact must be justified as such, Guidelines § §15130(a). For each cumulative impact, its geographic scope must be supported by a reasonable explanation. Guidelines §

15130(b)(3). Otherwise, an underinclusive cumulative impacts analysis "impedes meaningful public discussion and skews the decision maker's perspective concerning the environmental consequences of a project, the necessity for mitigation measures, and the appropriateness of project approval." *Citizens to Preserve the Ojai v. County of Ventura* (1985) 176 Cal.App.3d 421, 431. *See also Friends of the Eel River v. Sonoma County Water Agency* (2003) 108 Cal.App.4th 859.

The cumulative impacts analysis in the DEIR falls far short of these requirements, and fails to meet basic criteria for rationality. The DEIR largely confined its cumulative impacts analysis to projects located within 3 miles of the Project site or Santa Maria facility. No rationale or evidentiary support is provided for use of this particular geographic limitation; or, indeed, for selecting the evaluated projects based on a geographic limitation at all. The suite of projects swept up in this 3-mile radius are random and highly disparate, many being radically different in type from the Project and having few if any correlative impacts. These "cumulative" projects include, *inter alia*, a waterfront park, a mixed-use building, and a water purification project. DEIR at 6-3 - 5.

The very similar Marathon Martinez biofuel conversion project, lost in this strange mix, receives barely a mention in the analysis. The Marathon project is described in a single paragraph, but "discussion" of its cumulative impacts consists only of passing single-sentence and non-substantive general references such possible impacts – and those only including impacts to marine species, hazardous materials risks, and water quality. DEIR at 6-6, 8 - 9.

This approach is deficient in multiple respects. First, other than articulating very general criteria (DEIR at 6-2-3), the DEIR failed to specify a specific rational basis for the universe of projects considered in the cumulative impacts analysis – with respect to either the 3 mile radius or the particular array of projects evaluated within that radius. In particular, it failed to explain why projects were included in the cumulative impacts analysis whose impacts are clearly unrelated in type to the impacts of the Project. Second, the analysis is almost entirely non-quantitative, even though the Project's impacts are quantified with respect to key issues, including criteria air pollutant emissions and GHG emissions. And third, the document contains functionally zero cumulative impacts analysis of the Project as considered together with the closely related Marathon Martinez project, even though the two projects will necessarily have very similar impacts, and will cumulatively impact regional air quality, upstream agricultural land use, and the State's climate goals to a significantly greater degree than the impact of each project individually.

Rather than taking the unreasoned approach it did, the DEIR should have identified a universe of projects to include in its analysis based on information concerning those projects' impacts, and the likelihood that they will intersect with the impacts of the Project. Including a compliment of local projects in that universe would be appropriate when analyzing cumulative impacts that are local in scale; but confining the analysis entirely to local projects does not make sense with respect to project impacts that are regional (e.g., air quality impacts), statewide (impact on the state's climate policy), or national and international (climate, upstream indirect land use impacts).

Using these criteria, it is clear that, at minimum, comparable refinery biofuel conversion projects – including but not limited to the Marathon project – needed to be included in the cumulative impacts analysis. The refinery feedstock market is national, and even global, in scale. Both biodiesel and renewable diesel projects in the United States compete for the same, limited supply of crop oils and animal fats. As a result, a cumulative impacts analysis should have included existing HEFA projects currently under construction and proposed in California, such as the AltAir Paramount²⁵³ and Alon Bakersfield²⁵⁴ refinery projects as well as anticipated future conversion projects nationwide that are likely to produce similar large-scale impacts – e.g., due to anticipated use of similar feedstocks because of similar processing technology or transportation routes.

The following sections discuss particular categories of cumulative impacts that should have received scrutiny in the DEIR but did not.

A. The DEIR Should Have Analyzed the Cumulative Impact of California and Other US Biofuel Projects on Upstream Agricultural Land Use

As discussed in Section IV.D above, the Project alone has the potential to consume an enormous portion of the entire US production of the agricultural products it proposes to use as feedstocks. Project feedstock demand could boost demand for biofuel feedstock oils, currently 113,000 b/d nationwide total, by 71% (80,000 b/d). The Project could in principle, standing alone, consume up to 39 percent of the total U.S. soybean oil production for all uses.

The similar Marathon Martinez conversion project would cumulatively impact feedstock consumption levels, and hence on agricultural resources and their availability. As Commenters described in separate comments concerning the DEIR for that project, the Marathon project could increase demand for biofuel feedstock oils by 42% and could consume up to 24 percent of the nation's total production of soybean oil for all uses.²⁵⁵ Yet the overall limitation on HEFA feedstock availability is well documented within the scientific community,²⁵⁶ the financial

²⁵³ See Lillian, Betsy. "World Energy Acquires AltAir Renewable Fuel Assets in California." March 22 2018. <u>https://ngtnews.com/world-energy-acquires-altair-renewable-fuel-assets-in-california</u>; Alt/Air World Energy Paramount, CEQAnet Web Portal, Governor's Office of Planning and Research (June 2020), https://ceqanet.opr.ca.gov/2020069013/2.

²⁵⁴ Delek US Holdings, Inc, Delek US Holdings Announces Closing of Bakersfield Refinery Sale, Global Newswire (May 07, 2020). <u>https://www.globenewswire.com/news-release/2020/05/07/2029947/0/en/Delek-US-Holdings-Announces-Closing-of-Bakersfield-Refinery-Sale.html</u> (accessed Dec 8, 2021).

²⁵⁵ Comments by Biofuelwatch et al dated December 17, 2021 concerning Martinez refinery renewable fuels project, File No. CDLP20-02046.

²⁵⁶ Portner 2021, pp. 18-19, 28-29, 53-58.; Searchinger, 2008.

industry,²⁵⁷ the environmental justice community,²⁵⁸ as well as within the biofuel industry²⁵⁹ itself. Currently planning a biofuel refinery conversion in Bakersfield, Global Clean Energy Holdings, Inc. remarked in its SEC 10-K filing, "[t]he greatest challenge to the wide adoption of [HEFA] renewable fuels is the limited availability of the plant oils and animal fats that are the feedstock of [HEFA] renewable fuels."²⁶⁰ Given these constraints, a single biofuel conversion project of this magnitude could dramatically induce land use changes and makes the need for a cumulative analysis all the more dire.

The U.S. biofuel industry already consumes a significant portion of existing farm production of oils and animal fats. As shown in Table 8, as of fall 2021, there are eight operating renewable biofuel facilities and 75 biodiesel facilities, with a combined potential consumption of 235,000 barrels per day, or 3.6 billion gallons per year of lipid feedstocks. Meanwhile, the U.S. currently produces 372,000 barrels per day of oils and animal fats for all uses. Thus, at full capacity, these existing projects could consume up to 63% of existing U.S. production. Meanwhile, between these projects, the feedstock actually consumed (which is less than the amount theoretically possible under full production capacity) represented 31% of total U.S. production. See Table 8.

²⁵⁹ Nickle et al., 2021. Renewable diesel boom highlights challenges in clean-energy transition (Mar 3, 2021), Reuters. https://www.reuters.com/article/us-global-oil-biofuels-insight-idUSKBN2AV1BS.

²⁶⁰ Global Clean Energy Holdings, Inc., Annual Report (Form 10-K) April 13, 2021, https://www.sec.gov/Archives/edgar/data/748790/000152013821000195/gceh-20201231 10k.htm#a003 v1.

²⁵⁷ Kelly, S., U.S. renewable fuels market could face feedstock deficit, *Reuters* (Apr. 8, 2021), https://www.reuters.com/article/us-usa-energy-feedstocks-graphic/us-renewable-fuels-market-could-face-feedstockdeficit-idUSKBN2BW0EO (accessed Dec 8, 2021). ²⁵⁸ See e.g., Press Release, California Environmental Justice Alliance, IPCC Report Shows Urgent Need to Zero Out

Fossil Fuels, Reduce Direct Emissions (Aug. 17, 2021), https://caleja.org/wp-

content/uploads/2021/08/CEJA IPCC 2021-3.pdf; Rachel Smolker, *Bioenergy* in Hoodwinked in the Hothouse: Resist False Solutions to Climate Change, Biofuelwatch, Energy Justice network, Global Alliance for Incinerator Alternatives, ETC Group, Global Justice Ecology Project, Indigenous Climate Action, Indigenous Environmental Network, Just Transition Alliance, La Via Campesino, Movement Generation Justice and Ecology Project, Mt. Diablo Rising Tide, Mutual Aid Disaster Relief, North American Megadam Resistance Alliance, Nuclear Information and Resource Service, Rising Tide North America, Shaping Change Collaborative 19-20 (3d ed. Apr.

^{2021),} https://d5i6is0eze552.cloudfront.net/documents/Destination-deforestation Oct2019.pdf.

	All-Use US Production		Consumed in US As Biofuel Feedstock			
Lipid Type	Volume (b/d) ^{a b}	Mass (MM t/y) ^{a b}	Volume (b/d) ^c	Mass (MM t/y)⁰	As Percentage of US Production (%)	
Poultry Fat	22,573	1.1	1,455	0.07	6%	
Tallow	51,386	2.68	3,312	0.17	6%	
White Grease	13,420	0.75	4,793	0.27	36%	
Yellow Grease	18,272	0.96	11,928	0.63	65%	
Canola oil	14,425	0.77	10,604	0.56	74%	
Corn oil	49,201	2.62	15,249	0.81	31%	
Soybean oil	202,672	10.77	66,113	3.51	33%	
All Lipids	371,948	19.65	112,544	6.03	31%	

MM t/y: Million Metric tons per year **b/d**: barrel, 42 U.S. gallons, per day

a. US production for poultry fat, tallow (specifically inedible tallow, edible tallow, and technical tallow), white grease (specifically lard and choice white grease), and yellow grease taken from USDA estimates for 2017 through 2020. USDA National Agricultural Statistics Service "Fats and Oils: Oilseed Crushings, Production, Consumption and Stocks" Annual Summaries for 2017 through 2020. National Agricultural Statistics Service, "Fats and Oils: Oilseed Crushings, Production, Consumption and Stocks" Annual Summaries for 2017 through 2020. National Agricultural Statistics Service, "Fats and Oils: Oilseed Crushings, Production, Consumption and Stocks Annual Summary", 2017 through 2020, https://usda.library.cornell.edu/concern/publications/mp48sc77c. (accessed Dec. 14, 2021). Volume to mass conversions use specific gravities of 0.84, 0.96, and 0.91 for poultry fat, white grease, and yellow grease, respectively. **b.** Production for canola oil, corn oil (which includes distillers' corn oil), and soybean oil taken from USDA Oil Crops Yearbook Tables 5, 26, and 33, averaged from Oct. 2016 to Sept. 2020. USDA, Oil Crops Yearbook Tables 5, 26, and 33, Mar. 26, 2021, https://www.ers.usda.gov/data-products/oil-crops-yearbook/ (accessed Dec. 14, 2021). Volume to mass conversions use specific gravities of 0.914, 0.916, and 0.916 for canola oil, corn oil, and soybean oil, respectively. **c.** Lipid feedstocks consumed for biodiesel production are averages of 2018 through 2020 taken from EIA Monthly Biodiesel Production Report, Table 3, Feb. 26, 2021,

https://www.eia.gov/biofuels/biodiesel/production/table3.pdf (accessed Dec. 14, 2021). Biofuel feedstock estimates for canola oil are an average of 2019 and 2020 data because 2018 data were suppressed. Volume to mass conversions use specific gravities identified in a. and b.

In recent years, numerous additional biofuel projects have been proposed, with several already under construction. A review of news publications and other reports found 16 future projects either proposed, under construction, or under active consideration by refineries, in addition to the Marathon proposal. In total, these projects could triple the total amount of lipids consumed to a total capacity of 693,000 barrels per day, which would drastically exceed current, total U.S. lipid production. At full production these past and future projects would represent nearly double the entire nation's output. As a result, it is foreseeable that cumulatively, these projects will require massive increases in domestic oil crop production or foreign imports, either of which will be associated with massive environmental and climate impacts from land use changes.

Table 9: Current and Future Lipid-Based US Biofuel Projects

b/d: barrel, 42 U.S. gallons, per day

			Lipid Feedstock		
Refinery	Site Location	Status	Capacity (b/d)	Capacity As Percentage of US Lipid Supply (%)	
East Kansas Agri-Energy Renewable Diesel	Garnett, KS	Operational	206	0.1%	
Dakota Prairie Refining LLC	Dickinson, ND	Operational	13,183	3.5%	
Diamond Green Diesel LLC	Norco, LA	Operational	23,139	6.2%	
REG-Geismar LLC	Geismar, LA	Operational	6,866	1.8%	
Wyoming Renewable Diesel CO	Sinclair, WY	Operational	8,033	2.2%	
Altair Paramount LLC	Paramount, CA	Operational	2,884	0.8%	
American GreenFuels	Encinitas, CT	Operational	2,403	0.6%	
Down To Earth Energy LLC	Monroe, GA	Operational	137	0.0%	
World Energy Rome	Rome, GA	Operational	1,373	0.4%	
Cape Cod Biofuels Inc	Sandwich, MA	Operational	69	0.0%	
Maine Bio-Fuel Inc	Portland, ME	Operational	69	0.0%	
Blue Ridge Biofuels LLC	Newton, NC	Operational	137	0.0%	
Renewable Fuels by Peterson	North Haverhill, NH	Operational	549	0.1%	
World Energy Harrisburg LLC	Camp Hill, PA	Operational	1,305	0.4%	
Lake Erie Biofuels LLC	Erie, PA	Operational	3,090	0.8%	
Newport Biodiesel Inc	Newport, RI	Operational	481	0.1%	
Southeast Biodiesel/South Carolina LLC	Charleston, SC	Operational	343	0.1%	
Reco Biodiesel LLC	Reco Biodiesel, VA	Operational	137	0.0%	
Virginia Biodiesel Refinery LLC	Kilmarnock, VA	Operational	343	0.1%	
AG Processing - Algona	Algona, IA	Operational	5,218	1.4%	
AG Processing - Sgt Bluff	Sgt Bluff, IA	Operational	5,218	1.4%	
REG - Newton	Newton, IA	Operational	2,609	0.7%	
REG - Ralston	Ralston, IA	Operational	3,364	0.9%	
Lva Crawfordsville Biofuel LLC	Crawfordsville, IA	Operational	687	0.2%	
Cargill Inc	Iowa Falls, IA	Operational	3,845	1.0%	
Iowa Renewable Energy LLC	Washington, IA	Operational	2,472	0.7%	
Reg - Mason City	Mason City, IA	Operational	2,609	0.7%	
Western Dubuque Biodiesel LLC	Farley, IA	Operational	2,472	0.7%	
Western Iowa Energy LLC	Wall Lake, IA	Operational	3,090	0.8%	
Adkins Energy LLC	Lena, IL	Operational	275	0.1%	
REG - Danville	Danville, IL	Operational	3,433	0.9%	
REG - Seneca	Seneca, IL	Operational	5,218	1.4%	

Incobrasa Industries Ltd	Gilman, IL	Operational	3,021	0.8%
Alternative Fuel Solutions LLC	Huntington, IN	Operational	206	0.1%
Integrity Bio-Fuels LLC	Morristown, IN	Operational	343	0.1%
Louis Dreyfus Agricultural Industries LLC	Claypool, IN	Operational	6,797	1.8%
Cargill Inc	Wichita, KS	Operational	4,120	1.1%
Darling Ingredients Inc	Butler, KY	Operational	137	0.0%
Owensboro Grain Biodiesel LLC	Owensboro, KY	Operational	3,708	1.0%
Adrian Lva Biofuel LLC	Adrian, MI	Operational	1,030	0.3%
Thumb Bioenergy LLC	Sandusky, MI	Operational	-	-
Ever Cat Fuels LLC	Isanti, MN	Operational	206	0.1%
Minnesota Soybean Processors	Brewster, MN	Operational	2,472	0.7%
Reg - Albert Lea	Albert Lea, MN	Operational	3,158	0.8%
AG Processing - St. Joseph	St. Joseph, MO	Operational	2,884	0.8%
Deerfield Energy LLC	Deerfield, MO	Operational	3,433	0.9%
Ethos Alternative Energy of Missouri LLC	Lilborne, MO	Operational	343	0.1%
Seaboard Energy Marketing St Joseph	St. Joseph, MO	Operational	2,403	0.6%
Mid-America Biofuels, LLC	Mexico, MO	Operational	3,433	0.9%
Natural Biodiesel Plant LLC	Hayti, MO	Operational	343	0.1%
Paseo Cargill Energy LLC	Kansas City, MO	Operational	3,845	1.0%
Archer-Daniels-Midland Company	Velva, ND	Operational	5,836	1.6%
Cincinnati Renewable Fuels LLC	Cincinnati, OH	Operational	6,248	1.7%
Seaboard Energy Marketing Inc	Guymon, OK	Operational	2,609	0.7%
Bioenergy Development Group LLC	Memphis, TN	Operational	2,472	0.7%
REG - Madison	De Forest, WI	Operational	1,923	0.5%
Walsh Bio Fuels LLC	Mauston, WI	Operational	343	0.1%
Hero Bx Alabama LLC	Moundville, AL	Operational	1,373	0.4%
Delek Renewables Corp	Crossett, AR	Operational	1,030	0.3%
Futurefuel Chemical Company	Batesville, AR	Operational	4,120	1.1%
Solfuels USA LLC	Helena, AR	Operational	2,746	0.7%
Delek US	New Albany, MS	Operational	824	0.2%
Scott Petroleum Corporation	Greenville, MS	Operational	1,167	0.3%
World Energy Natchez LLC	Natchez, MS	Operational	4,944	1.3%
REG - Houston	Seabrook, TX	Operational	3,639	1.0%
World Energy Biox Biofuels LLC	Galena Park, TX	Operational	6,179	1.7%
Delek Renewables LLC	Clerburne, TX	Operational	824	0.2%
Eberle Biodiesel LLC	Liverpool, TX	Operational	-	-
Global Alternative Fuels LLC	El Paso, TX	Operational	1,030	0.3%
Rbf Port Neches LLC	Houston, TX	Operational	9,887	2.7%

Sabine Biofuels II LLC	Houston, TX	Operational	2,060	0.6%
Alaska Green Waste Solutions	Anchorage, AK	Operational	_,	0.07
LLC		·	107	0.00/
Grecycle Arizona LLC	Tucson, AZ	Operational	137	0.0%
Crimson Renewable Energy LP	Bakersfield, CA	Operational	1,923	0.5%
American Biodiesel Inc	Encinitas, CA	Operational	1,373	0.4%
Imperial Western Products Inc	Coachella, CA	Operational	824	0.2%
New Leaf Biofuel LLC	San Diego, CA	Operational	412	0.1%
Simple Fuels Biodiesel	Chilcoot, CA	Operational	69	0.0%
Big Island Biodiesel LLC	Keaau, HI	Operational	412	0.1%
Sequential-Pacific Biodiesel LLC	Salem, OR	Operational	824	0.2%
REG - Grays Harbor	Hoquiam, WA	Operational	7,347	2.0%
Marathon ^a	Dickinson, ND	Operational	12,631	3.4%
Camber Energy ^b	Reno, NV	Operational	2,952	0.8%
All Operational Projects			235,298	63.3%
Global Clean Energy Holdingsº	Bakersfield	Under Construction	15,000	4.0%
HollyFrontier Corp ^d	Artesia, NM	Under Construction	8,583	2.3%
HollyFrontier Corp ^e	Cheyenne, WY	Under Construction	6,179	1.7%
Diamond Green Diesel ^f	Port Arthur, TX	Under Construction	36,390	9.8%
Diamond Green Diesel ^g	Norco, LA	Under Construction	27,464	7.4%
CVR ^h	Wynnewood, OK	Proposed	6,866	1.8%
Ryze Renewables ¹	Las Vegas, NV	Under Construction	7,894	2.1%
NEXT Renewable Fuels Oregon ^j	Clatskanie, OR	Proposed	50,000	13.4%
Renewable Energy Group ^k	Geismar, LA	Under Construction	17,165	4.6%
World Energy ^ı	Paramount, CA	Proposed	21,500	5.8%
Grön Fuels LLC ^m	Baton Rouge, LA	Proposed	66,312	17.8%
PBF ⁿ	Chalmette, LA	Proposed	24,722	6.6%
Calumet ^o	Great Falls, MT	Proposed	12,631	3.4%
Seaboard Energy ^p	Hugoton, KS	Under Construction	6,842	1.8%
Chevron ^q	El Segundo, CA	Under Construction	10,526	2.8%
CVR Energy ^r	Coffeyville, KS	Under Consideration	11,578	3.1%
Phillips 66 ^s	Rodeo, CA	Proposed	80,000	21.5%
Marathon ^t	Martinez, CA	Proposed	48,000	12.9%

All projects from EIA 2021 "U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity" and "U.S. Biodiesel Plant Production Capacity" reports unless otherwise noted. "-" indicates that capacity data was suppressed in the EIA data. EIA, U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity, Petroleum Reports, Sept. 3, 2021, https://www.eia.gov/biofuels/renewable/capacity/renewablescapacity.xlsx (accessed Dec. 14, 2021).; EIA, U.S. Biodiesel Plant Production Capacity, Petroleum Reports, September 3, 2021, https://www.eia.gov/biofuels/biodiesel/capacity/biodieselcapacity.xlsx (accessed Dec. 14, 2021). a. Frohlke, U. Haldor Topsoe HydroFlex technology results in successful test run at Marathon Petroleum Corp facility producing 100% renewable diesel, Haldor Topsoe, Aug 5. 2021, https://blog.topsoe.com/marathon-petroleum-corporation-confirms-successful-test-run-for-usrefinerv-producing-100-renewable-diesel-based-on-topsoes-hydroflex-technology (accessed Dec 14, 2021). b. Viking Energy Group, Inc. Viking Energy Signs Agreement to Acquire Renewable Diesel Facility, Globe Newswire, Dec. 1, 2021, ttps://www.globenewswire.com/news-release/2021/12/01/2344429/0/en/Viking-Energy-Signs-Agreement-to-Acquire-Renewable-Diesel-Facility.html (accessed Dec 14, 2021). c. Cox, J. Refinery on Rosedale makes final changes for switch to cleaner fuel, Bakersfield.com, Nov. 6, 2021, https://www.bakersfield.com/news/refinery-on-rosedale-makes-final-changes-for-switch-tocleaner-fuel/article_36271b12-3e94-11ec-b8ac-df50c6c90b95.html (accessed Dec 14, 2021). d. Brelsford, R. HollyFrontier lets contract for new unit at Navajo refinery, Oil & Gas Journal, Jan. 29, 2020, https://www.ogi.com/refiningprocessing/refining/article/14092707/hollyfrontier-lets-contract-for-new-unit-at-navajo-refinery (accessed Dec 14, 2021). e. McGurty, J. HollyFrontier increases renewable fuel capacity with purchase of Sinclair Oil, S&P Global, Aug. 3, 2021, https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/080321-hollyfrontier-increases-renewable-fuelcapacity-with-purchase-of-sinclair-oil (accessed Dec. 14, 2021). f. McGurty, J. Diamond Green Diesel St. Charles renewable diesel expansion starting up, S&P Global, Oct. 21, 2021, https://www.spglobal.com/platts/en/market-insights/latestnews/agriculture/102121-refinery-news-diamond-green-diesel-st-charles-renewable-diesel-expansion-starting-up (accessed Dec. 14, 2021). g. McGurty, J. Diamond Green Diesel St. Charles, Louisiana, renewable diesel plant shut ahead of Ida, S&P Global, Aug 29, 2021, https://www.spglobal.com/platts/en/market-insights/latest-news/oil/082921-diamond-green-diesel-st-charleslouisiana-rd-plant-shut-ahead-of-ida (accessed Dec. 14, 2021). h. CVR Energy lets contract for Wynnewood refinery renewables project, Oil & Gas Journal, Jan. 27, 2021, https://www.ogj.com/refining-processing/refining/operations/article/14196317/cvrenergy-lets-contract-for-wynnewood-refinery-renewables-project (accessed Dec. 14, 2021). i. Ryze Renewables, Renewable Diesel Facilities in Reno and Last Vegas, https://www.ryzerenewables.com/facilities.html (accessed Dec. 14. 2021). j. Erfid, C. NEXT Renewable Fuels Oregon EFSC Exemption Request. Letter to Todd Cornett, pp. 2, Oct. 30, 2020, https://www.oregon.gov/energy/facilities-safety/facilities/Facilities%20library/2020-11-9-PWB-Request-for-Exemption.pdf (accessed Dec. 14, 2021). k. Voegele, E. REG discusses Geismar expansion, Houston shutdown in Q3 results, Biodiesel Magazine, Nov. 8, 2021, http://www.biodieselmagazine.com/articles/2517837/reg-discusses-geismar-expansion-houstonshutdown-in-q3-results (accessed Dec. 14, 2021). I. City of Paramount, Notice of Preparation of a Draft Subsequent Environmental Impact Report, Paramount Petroleum AltAir Renewable Fuels Project, CUP 757 Amendment, pp. 12, Jun. 4, 2020. https://www.paramountcity.com/home/showpublisheddocument/5764/637268681923030000 (accessed Dec. 14, 2021). m. Boone, T., Grön Fuels gets air quality permit for proposed \$9.2 billion plant, The Advocate, Apr. 22, 2021, https://www.theadvocate.com/baton_rouge/news/business/article_9e4a0144-a378-11eb-bc32-6362f7d3744c.html (accessed Dec. 14, 2021). n. Brelsford, R. PBF Energy advances plans for proposed Chalmette refinery renewables project, Oil & Gas Journal, Aug. 6, 2021, https://www.ogi.com/refining-processing/refining/article/14208235/pbf-energy-advance-plans-forproposed-chalmette-refinery-renewables-project (accessed Dec. 14, 2021). o. Brelsford, R. Calmut lets contract for Montana refinery's renewable diesel project, Oil & Gas Journal, Aug. 31, 2021, https://www.ogj.com/refiningprocessing/refining/article/14209547/calumet-lets-contract-for-montana-refinerys-renewable-diesel-project (accessed Dec. 14, 2021). p. Brelsford, R. Seaboard Energy lets contract for Kansas renewable diesel plant, Oil & Gas Journal, May 14, 2021, https://www.ogj.com/refining-processing/refining/article/14203325/seaboard-energy-lets-contract-for-kansas-renewable-dieselplant (accessed Dec. 14, 2021). q. McGurty, J. Chevron expands renewable fuels output with more lower carbon business spending, S&P Global, Sep. 14, 2021, https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/091421chevron-expands-renewable-fuels-output-with-more-lower-carbon-business-spending (accessed Dec. 14, 2021). r. CVR Energy selects Honeywell technology for Coffeyville refinery, Dec. 9, 2021, http://biomassmagazine.com/articles/18550/cvr-energyselects-honeywell-technology-for-coffeyville-refinery (accessed Dec 14, 2021). s. Rodeo Renewed DEIR at 3-23 t. Marathon Martinez DEIR at 2-15 u. Feedstock capacities calculated assuming a feed-to-product mass ratio of 80.9% per Pearlson et al. (2013) for maximum distillate production, an average lipid feedstock specific gravity of 0.916 (that of soybean oil), and an average product specific gravity of 0.78 (that of renewable diesel). v. Total US yield of lipids taken from Table 9.

Thus, while the impacts of either project standing alone on agricultural resources and land use would be large, the combined impact of the two projects together could be catastrophic in scale – even more so when other existing and planned projects are considered in the cumulative impacts mix. Among other things, this level of market disruption would greatly increase that likelihood that other types of fungible food crop oils – including palm oil – would start to replace the dwindling supply of soy and other food crop oils, with attendant destructive impacts. The sheer amount the land required to grow food crop oils for existing and projected

biofuel projects domestically indicates dramatic land use changes will inevitably occur at a global scale. Despite the novelty of this type of refinery conversion in California, even just the national data shows the Project is entering a large biodiesel market which has already contributed to the significant indirect land use changes documented in Section IV above.

B. The DEIR Should Have Analyzed the Cumulative Impact of California Biofuel Production on the State's Climate Goals²⁶¹

As discussed in Section VI, large-scale biofuel production is incompatible with California's climate goals, which contemplate large-scale electrification via BEVs, and a phaseout of combustion fuel. That impact cannot be fully disclosed, measured, and analyzed, however, without looking at the cumulative impact of all of the biofuel production existing or contemplated in the state. The DEIR erred in not undertaking that analysis.

Such analysis would reveal that, in fact, current proposals to repurpose in-state crude refining assets for HEFA biofuels could exceed the biofuel caps in state climate pathways by 2025. New in-state HEFA distillate (diesel and jet fuel) production proposed by this Project, the Marathon, AltAir, and the Global Clean Energy (GCE) projects for the California fuels market would, in combination, total ~2.1 billion gal./y and is planned to be fully operational by 2025. ²⁶² If fully implemented, these current plans alone would exceed the HEFA diesel and jet fuel caps of 0.0-1.5 billion gal./y in state climate pathways.

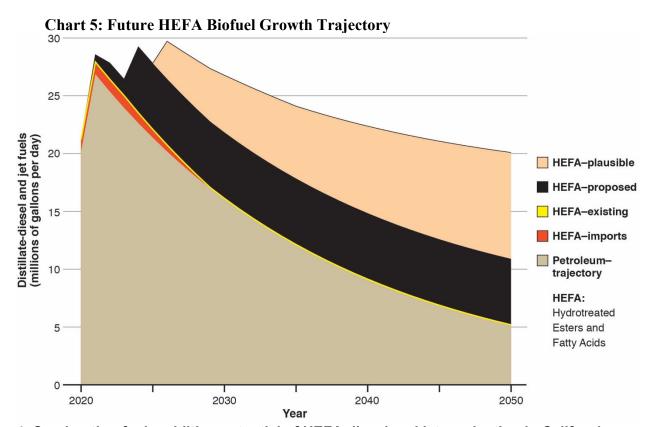

Further HEFA biofuels growth could also exceed total liquid fuels combustion benchmarks for 2045 in state climate pathways. As BEVs replace petroleum distillates along with gasoline, crude refiners could repurpose idled petroleum assets for HEFA distillates before FCEVs ramp up, and refiners would be highly incentivized to protect those otherwise stranded assets (Chapter 1).

Chart 5 illustrates a plausible future HEFA biofuel growth trajectory in this scenario. Declining petroleum diesel and jet fuel production forced by gasoline replacement with BEVs (gray-green, bottom) could no longer be fully replaced by currently proposed HEFA production (black) by 2025–2026. Meanwhile the idled crude refinery hydrogen production and processing assets repurpose for HEFA production (light brown, top). As more petroleum refining assets are

²⁶¹ Additional support for this section is provided in Karras, 2021a.

²⁶² Supporting Material Appendix for Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing; prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting, www.energy-re-source.com; Application for Authority to Construct Permit and Title V Operating Permit Revision for Rodeo Renewed Project: Phillips 66 Company San Francisco Refinery (District Plant No. 21359 and Title V Facility # A0016); Prepared for Phillips 66 by Ramboll US Consulting, San Francisco, CA. May 2021; Initial Study for: Tesoro Refining & Marketing Company LLC—Marathon Martinez Refinery Renewable Fuels Project; received by Contra Costa County Dept. of Conservation and Development 1 Oct 2020; April 28, 2020 Flare Event Causal Analysis; Tesoro Refining and Marketing Company, subsidiary of Marathon Petroleum, Martinez Refinery Plant #B2758; report dated 29 June, 2020 submitted by Marathon to the Bay Area Air Quality Management District: San Francisco, CA. <u>https://www.baaqmd.gov/about-air-guality/research-and-data/flare-causal-reports</u>; Paramount Petroleum, AltAir Renewable Fuels Project Initial Study; submitted to City of Paramount Planning Division, 16400 Colorado Ave., Paramount, CA. Prepared by MRS Environmental, 1306 Santa Barbara St., Santa Barbara, CA; Brelsford, R. Global Clean Energy lets contract for Bakersfield refinery conversion project. Oil & Gas Journal. 2020.

stranded, more existing refinery hydrogen production is repurposed for HEFA fuels, increasing the additional HEFA production from left to right in Chart 5.

4. Combustion fuels additive potential of HEFA diesel and jet production in California.As electric vehicles replace gasoline, stranding petroleum refining assets, continuing HEFA biorefining expansion could add as much as 15 million gallons per day (290%) to the remaining petroleum distillate-diesel and jet fuel refined in California by 2050. Locking in this combustion fuels additive could further entrench the incumbent combustion fuels technology in a negative competition with cleaner and lower-carbon technologies, such as renewable-powered hydrogen fuel cell electric vehicles (FCEVs). That could result in continued diesel combustion for long-haul freight and shipping which might otherwise be decarbonized by zero emission hydrogen-fueled FCEVs. Petroleumtrajectory for cuts in petroleum refining of distillate (D) and jet (J) fuels that will be driven by gasoline replacement with lower-cost electric vehicles, since petroleum refineries cannot produce as much D+J when cutting gasoline (G) production. It is based on 5.56%/yr light duty vehicle stock turnover and a D+J:G refining ratio of 0.615. This ratio is the median from the fourth quarter of 2010–2019, when refinery gasoline production is often down for maintenance, and is thus relatively conservative. Similarly, state policy targets a 100% zero-emission LDV fleet by 2045 and could drive more than 5.56%/vr stock turnover. Values for 2020-2021 reflect the expected partial rebound from COVID-19. **HEFA-imports** and **HEFA-existing** are the mean D+J "renewable" volumes imported, and refined in the state. respectively, from 2017-2019. The potential in-state expansion shown could squeeze out imports. HEFA-proposed is currently proposed new in-state capacity based on 80.9% D+J yield on HEFA feed including the Phillips 66 Rodeo. Marathon Martinez, Altair Paramount, and GCE Bakersfield projects, which represent 47.6%, 28.6%, 12.8%, and 11.0% of this proposed 5.71 MM gal/day total, respectively. **HEFA-plausible:** as it is idled along the petroleum-based trajectory shown, refinery hydrogen capacity is repurposed for HEFA biofuel projects, starting in 2026. This scenario assumes feedstock and permits are acquired, less petroleum replacement than state climate pathways, and slower HEFA growth than new global HEFA capacity expansion plans targeting the California fuels marketⁱ anticipate. Fuel volumes supported by repurposed hydrogen capacity are based on H₂ demand for processing yield-weighted feedstock blends with fish oil growing from 0% to 25%, and a J: D product slate ratio growing from 1: 5.3 to 1: 2, during 2025–2035. For conceptual analysis see Karras, 2021a; for data and methodological details see Karras. 2021a Table A7.263

²⁶³ Supporting Material Appendix for Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing; prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting, <u>www.energy-re-source.com</u>.

Refining and combustion of HEFA distillates in California could thus reach ~15.0 million gal./d (5.47 billion gal./y), ~290% of the remaining petroleum distillates production, by 2050.²⁶⁴ HEFA distillate production in this scenario (5.47 billion gal./y) would exceed the 1.6-3.3 billion gal./y range of state climate pathways for combustion of *all* liquid transportation fuels, including petroleum and biofuel liquids, in 2045.²⁶⁵ This excess combustion fuel would squeeze out cleaner fuels, and emit future carbon, from a substantial share of the emergent petroleum distillate fuels replacement market — a fuel share that HEFA refiners would then be motivated to retain.

The scenario shown in Chart 5 is an illustration, not a worst case. It assumes slower growth of HEFA biofuel combustion in California than global investors anticipate, less petroleum fuels replacement than state climate pathways, and no growth in distillates demand. Worldwide, the currently planned HEFA refining projects targeting California fuel sales total ~5.2 billion gal./y by 2025.²⁶⁶ HEFA growth by 2025 in the Chart 5 scenario is less than half of those plans. Had the DEIR considered that 5.2 billion gallon/year estimate by California Energy Commission staff,²⁶⁷ for example, the County could have found that the Project would contribute to exceeding the state climate pathway constraint discussed in Section V of 0.5–0.6 and 0.8–0.9 billion gallons/year total HEFA jet fuel, and HEFA diesel combustion, respectively, based on that fact alone. Additionally, State climate pathways reported by Mahone et al. replace ~92% of current petroleum use by 2045, which would lower the petroleum distillate curve in Chart 5, increasing the potential volume of petroleum replacement by HEFA biofuel. Further, in all foreseeable pathways, refiners would be incentivized to protect their assets and fuel markets.

C. The DEIR Did Not Adequately Disclose and Analyze Cumulative Marine Resources Impacts

There is currently a boom in proposals for biofuel conversions. Unlike existing fossil fuel refining, there is little existing transportation infrastructure for biofuel feedstocks, so, as with the Project, much of that transportation will take place via ship. This means that there will be cumulative impacts to marine resources that have not been adequately evaluated in the DEIR. For example, increases in feedstock demand will implicate economic and transportation impacts to marine resources all over the world.

²⁶⁴ Id.

²⁶⁵ Mahone et al., 2020a. Achieving Carbon Neutrality in California: PATHWAYS Scenarios Developed for the California Air Resources Board, DRAFT: August 2020; Energy and Environmental Economics, Inc.: San Francisco, CA. https://ww2.arb.ca.gov/sites/default/files/2020-08/e3 cn draft report aug2020.pdf

²⁶⁶ Schremp (2020). Transportation Fuels Trends, Jet Fuel Overview, Fuel Market Changes & Potential Refinery Closure Impacts. BAAQMD Board of Directors Special Meeting, May 5 2021, G. Schremp, Energy Assessments Division, California Energy Commission. In Board Agenda Presentations Package; <u>https://www.baaqmd.gov/-/media/files/board-of-directors/2021/bods_presentations_050521_revised_op-pdf.pdf?la=en</u> ²⁶⁷ Id.

In 2017 Phillips 66 proposed a marine terminal expansion. According to the Project Description for that project, it was to

modify the existing Air District permit limits to allow an increase in the amount of crude and gas oil that may be brought by ship or barge to the Marine Terminal at the Phillips 66 Company (Phillips 66) San Francisco Refinery in Rodeo, California (Rodeo Refinery). The refinery processes crude oil from a variety of domestic and foreign sources delivered by ship or barge at the Marine Terminal and from central California received by pipeline. The Proposed Project would allow the refinery to receive more waterborne-delivered crude and gas oil, and thereby to replace roughly equivalent volumes of pipelinedelivered crudes with waterborne-delivered crudes. However, the Proposed Project would not affect the characteristics of the crude oil and gas oil the refinery is able to process.

The proposed increase in offloading and the additional ship and barge traffic necessitates modification of Phillips 66's existing Permit to Operate and the Major Facility Review (Title V) Permit, which was issued by the Air District to the Phillips 66, San Francisco Refinery (BAAQMD Facility #A0016). Approval of the proposed air permit modifications would be a discretionary action by the Air District, requiring CEQA review (BAAQMD Regulation 2-1-310).

Phillips 66 Marine Terminal Permit Revision Project, Notice of Preparation, June 2017, p. 2. The final EIR must evaluate past proposals such as the 2017 marine terminal expansion proposal, to determine whether there are cumulative impacts and whether those proposals are likely to be approved.

The record for BAAQMD's analysis of the 2017 project proposal should be incorporated into the record for the current CEQA review.

X. THE DEIR SHOULD HAVE MORE FULLY ADDRESSED HAZARDOUS CONTAMINATION ISSUES ASSOCIATED WITH CONSTRUCTION AND DECOMMISSIONING

The DEIR failed to adequately address the interrelated issues of site decommissioning and contamination hazards. The Refinery site is heavily contaminated, which gives rise to issues concerning both how decommissioned portions of the refinery will be addressed, and how Project construction and operation may affect ongoing remediation and monitoring activities. Additionally, given the likely short and definably finite commercial lifetime of the Project, the DEIR should have evaluated the impact of full site decommissioning.

A. The DEIR Inadequately Evaluate Project Impacts on Hazardous Waste Cleanup Operations

The fails to disclose and analyze information concerning the multiple cleanup orders that have been issued for the site, and how Project construction may impact the cleanup work. The general overview of specific water quality remediation projects (DEIR at 4.10-356) is an incomplete description of such activities. Described below are specific measures taken by agencies to address hazardous contamination at the Refinery, which should have been addressed.

The Department of Toxic Substances Control (DTSC) is monitoring two areas under Facility EPA ID Number: CAD009108705 affected by hazardous contamination. The first is the Primary Basin, whose latest Post Closure Facility Permit was effective February 21, 2012 and will expire February 20, 2022.²⁶⁸ The DTSC has also placed deed restrictions on contaminate areas at the Refinery, banning land use for residences, hospitals, schools, and day cares.²⁶⁹.

Additionally, the San Francisco Bay Regional Water Quality Control Board (Water Board) is extensively addressing hazardous contaminants affecting water quality, but the DEIR only references at a high level (DEIR 4.10-356). The Water Board has two active correction actions with the refinery: a waste discharge requirement and a site cleanup requirement.²⁷⁰

²⁶⁸ The Primary Basin is located in the southern portion of the facility east of the Unit 100 wastewater facility. The permit will allow the facility to conduct closure activities, groundwater monitoring, liner and leachate

collection/leak detection system inspection and maintenance, and emergency storage. The second is the Land Treatment Area (LTA) whose latest Post Closure Facility Permit was effective 1/9/17 and will expire 1/8/27. The LTA is in the southern portion of the facility and received hazardous wastes between 1976 and 1983. The LTA has been a US EPA Post-closure permit since 1989. The permitted activities are conduct post closure activities, groundwater monitoring, soil sampling, inspection and maintenance of the wells and cap/vegetative cover. See Hazardous Waste Post Closure Facility Permit Land Treatment Area issued to Phillips 66 Co., effective Date January 9, 2017; Hazardous Waste Post Closure Facility Permit, Primary Basin, issued to ConocoPhillips, Effective Date: February 21, 2012.

²⁶⁹ The DTSC has filed three such deed restrictions all on 8/26/19. Two relate to Post-Closure Permits and the third is joint effort with the Water Board on surface and subsurface hazardous wastes. The first one is for 1.37 acres of the Primary Basin. The second one is for 6.4 acres of the LTA. The third one is for 1.06 acres of the Former Container Storage Unit (FCSU). Per a March, 1996 agreement with the Water Board, the DTSC would oversee the closures of the surface containment structures (asphalt pads, concrete slabs) and the Water Board would address the subsurface issues as part of Inactive Waste Site 6C correction action process. A Closure Certification Report was submitted to DTSC on 10/31/11 and approved 7/31/12(noted in recorded deed) noting that the certification was conditioned on recording of a land use covenant. See Closure Certification Report, Former Container Storage Unit ConocoPhillips San Francisco Refinery Rodeo, California, EPA ID No. 009108705, October 31, 2011; Covenant to Restrict Use of Property Environmental Restriction, Contra Costa County Assessor's Parcel No. 357-300-005, Primary Basin within the Phillips 66 Company San Francisco Refinery (Rodeo, California), EPA ID No. CAD009108705, DTSC Site Code: 200203; Covenant to Restrict Use of Property

Environmental Restriction Contra Costa County Assessor's Parcel No. 358-010-008, Land Treatment Area within the Phillips 66 Company San Francisco Refinery (Rodeo, California), EPA ID Number CAD009108705, DTSC Site Code: 200203.

²⁷⁰ Both these requirements are conditioned by Final Revised Groundwater Self-Monitoring Plan (SMP) dated April 29, 2015. The SMP reviewed the then current groundwater monitoring and reporting requirements that were included in the Waste Discharge Requirements (WDR) Order No. R2-2005-0026, adopted by the Water Board in June 2005, and referred to in the SCR Order No. R2 2006-0065 adopted by the Water Board in October 2006. In accordance with Task 11 of the San Francisco Bay Regional Water Quality Control Board (Water Board) Site

These actions involve an extensive monitoring program associated with both the DTSC and the Water Board cleanup actions.²⁷¹

Of particular note is that the Water Board identified an issue with tar seeps at the Refinery site. ²⁷² The investigation of the area for tar seep was carried out between 2016 and 2019 and the remediation in 2020. Approximately 127 metal drums and wood barrels were removed. A total of approximately 601.5 tons of waste soil and tar were excavated. The waste was characterized as Class II non-hazardous material, and was transported offsite.²⁷³

All of these historic and ongoing actions should have been evaluated in sufficient depth to determine whether Project construction and operation has the potential to negatively impact them, either by disturbing contaminated areas or interfering with remediation and monitoring.

With regard to contaminated areas, the tar seep issue illustrates the critical importance of assessing the impact on these areas of excavation and movement of material that will be involved in conversion construction. Historically, numerous tar seeps have been observed on the pavement surface throughout the areas surrounding the warehouse building and the laboratory building. Although the tar is firm and immobile during the colder months, elevated ambient temperatures

Cleanup Requirements (SCR) Order No. R2-2006-0065, the SMP realigned the groundwater-monitoring program to the current site conditions.

²⁷¹ The SMP evaluated the current groundwater monitoring program at the site includes wells associated with the WDR, the SCR, and the DTSC Permits, in addition to wells associated with various voluntary investigation and evaluations programs at the refinery that are not specifically defined under a regulatory order, directive, or permit. Wells associated with the WDR are generally monitored under a detection-monitoring program, intended to detect indications of a potential release from the subject waste management unit. Wells associated with the SCR are monitored under a corrective action evaluation program, intended to evaluate the effectiveness of the specific corrective action. See California Regional Water Quality Control Board San Francisco Bay Region, Order No. R2-2006-0065, Site Cleanup Requirements and Recission of Order No. 93-046 for ConocoPhillips Company San Francisco Bay Region, Order No. R2-2005-0026, Updated Waste Discharge Requirements and Rescission of Order No. 97-027 for ConocoPhillips Company San Francisco Refinery, June 15, 2005.

²⁷² Based on the SMP, the Water Board and Phillips updated the WDR to R2-2015-0046 and the SCR to R2-2018-0014 with the updates to monitoring hazardous waste and groundwater. SCR R2-2018-0014 contained several mandatory tasks that needed special attention. These included Main Interceptor Trench (MIT) Alignment C Extension Completion Report, A-E Gap Hydraulic Containment System Completion Report, Area 6 FPLH Recoverability Evaluation Report, and the Tar Seep Area Investigation Report. California Regional Water Quality Control Board San Francisco Bay Region, Order No. R2-2018-0014, Updated Site Cleanup Requirements and Recission of Order Nos. R2-2006-0065 and R2-2012-0081 for Phillips 66 Company San Francisco Refinery, April 13, 2018; California Regional Water Quality Control Board San Francisco Bay Region, Order No. R2-2015-0046, Updated Waste Discharge Requirements and Rescission of Order No. R2-2015-0026 for Phillips 66 Company San Francisco Refinery, November 23, 2015.

²⁷³ The waste tar drums, and impacted soil were transported and disposed of offsite at Republic Services' Keller Canyon landfill in Pittsburg, California. A new utility duct-bank was installed around the perimeter of the excavation from the existing power pole then south to the laboratory building. After the duct-back was installed, the cables in the two pre-existing utility duct-banks were taken out of service and removed. Two unanticipated pipeline segments were encountered, removed or abandoned in-place during the excavation. Along the southeastern excavation area, approximately 30 linear feet of 8-inch diameter wooden-stave storm drainpipe removed. A metal 10-inch diameter pipe segment, buried approximately 6 feet bgs, capped in-place with concrete. As you can from the remediation efforts, there is risk to any remediation to any area of the refinery.

during the summer months soften the tar, causing it to seep and expand vertically via viscous flows to the ground surface and spread by gravity, adhering to the wheels of vehicles, and the shoes of pedestrians.²⁷⁴ A similar problem of buried contamination arose when a rusted 55 gallon drum was found in 2021 around Tank 302 when the Main Interceptor Trench was being upgraded per Task 1 of R2-2018-0014. These excavation risks should be explained more clearly in the DEIR²⁷⁵

With regard to monitoring activities, the DEIR inadequately describes the potential impact of the new Sulfur Treatment Unit (STU) and Pre-Treatment Unit(PTU) will have on existing Inactive Waste Unites (IWS) and current monitoring of wastes and groundwater. Figure 3.2 of the DEIR shows the positions of the new STU and PTU units and where the three storage tanks will be torn down. Figures 4 and 6 of SCR-R2-20018-0014 seem to indicate that the STU and PTU will be built over IWS 4. The DEIR should have addressed the potential impacts of this construction in IWS 4, and proposed mitigation to minimize disturbance. Similarly, the DEIR did not address impacts of Project activities on monitoring associated with the Carbon Plant, which is also under a WDR.²⁷⁶

The DEIR should have disclosed in detail all of these historic and ongoing cleanup and monitoring operations, and described the Project's impact on them. Without such disclosure, the DEIR's cursory conclusion that construction and operation activities will not impact them is unsupported by substantial evidence. DEIR at 4.9-326-327; 339-340.

B. The DEIR Should Have More Fully Evaluated Impacts of Partial and Complete Decommissioning

The DEIR addresses decommissioning at the Project site only with respect to infrastructure that would not be used in connection with the Project, including the pipeline sites, Carbon Plant, and Santa Maria facility; and construction of new Project infrastructure. DEIR at 3-31, 4.9-326-327 and 339-340. However, as discussed in Section II, the foreseeable likelihood is that biofuel demand in California will wane significantly within the relatively near term as

²⁷⁴ Letter dated September 25,2020 to Ross Steenson from Christopher M. Swartz re Tar Drums Removal Summary Report Phillips 66 San Francisco Refinery, Rodeo, California

Task 7, Site Cleanup Requirements Order No. R2—2018—0014 CRWQCB—SFB File No. 2119.1051.

²⁷⁵ Letter dated June 9, 2021 from Christopher M. Swartz re Tank 302 GW Barrier System Construction - Buried Drum Removal Summary Report Site Cleanup Requirements Order No. R2-2018-0014 CRWQCB-SFB File No. 2119.1051.

²⁷⁶ WDR R2-2008-0013 regulates stormwater at the Carbon Plant. The previous owner constructed the Basin System, consisting of two settling basins and a large surface impoundment, in 1983. The Basin System was designed to recover water used at the Facility, including 1) cooling tower blowdown water, 2) dust control water, and 3) storm water runoff; and recover coke fines. This water is recycled from the surface impoundment and used in Facility processes, in a closed loop system. Amendment R2-2013-0008 was added to update the self-monitoring system. The DEIR did not mention the risks to the groundwater by the removal and demolishing of the Carbon Plant. See California Regional Water Quality Control Board San Francisco Bay Region, Order No. R2-2013-0008, Amendment of Waste Discharge Requirements Order No. R2-2008-0013 for Phillips 66 Company Rodeo Carbon Plant, March 13, 2013; California Regional Water Quality Control Board San Francisco Bay Region, Order No. R2-2008-0013, Updated Waste Discharge Requirements and Rescission of Order No. 98-038 for ConocoPhillips Company Contra Costa Carbon Plant, March 17, 2008.

California transitions to a zero-emissions transportation economy. As noted, Contra Costa County itself has signed a pledge to be "diesel free by '33." Accordingly, the realistic likelihood is that the Project's commercial life will be short. Thus, in order to fully inform that public regarding foreseeable impacts, and to guide the County's thinking about planning for the Project site's future, the DEIR should have examined the impacts of full decommissioning of the site (even though such full decommissioning was rejected as a Project alternative, DEIR at 5-9).

The DEIR, however, does not substantively evaluate decommissioning impacts at all – either with respect to the infrastructure it acknowledges will be decommissioned, or the remaining infrastructure whose decommissioning in the not-distant future is inevitable. The DEIR should have disclosed and analyzed the impact of decommissioning in both these scenarios. With respect to decommissioning envisioned as part of the Project, the DEIR notes that the Project "includes the cessation of operations at the Carbon Plant and of the crude handling units, sulfur recovery unit, reformer, and isomerization unit." The DEIR should specify what will be done with this equipment, and how Phillips 66 will address any site contamination associated with it.

With respect to the inevitable decommissioning of the entire Refinery, the DEIR should have addressed the high level of existing contamination, and disclosed and analyzed the impacts of addressing it upon full decommissioning. Various oil companies refined oil at the Rodeo site since 1896,²⁷⁷ some 75 years before the environmental protection wave of the early 1970s, and through waves of toxic gasoline additives—tetraethyl lead and then MTBE, from the 1930s through the early 2000s—and refinery releases to land persist to this day. Today, evidence that refinery byproduct waste disposal continues on surrounding land is here for all to see, at the carbon plant, where toxics-laden petroleum coke particulates dust the surrounding soil.

XI. THE DEIR INADEQUATELY ADDRESSED THE PROJECT'S IMPACTS ON MARINE RESOURCES

Even if the DEIR's baseline is taken at face value, in spite of the lack of any evidence that purported baselines reflect the actual amount of refining occurring at the Facility, the Project contemplates a drastic increase in the amount of feedstock and other potential pollutants crossing through the marine terminal. The DEIR claims that current product received through the marine terminal is 35,000 bpd, while the completed Project contemplates 118,000 pbd, an over 300% increase. DEIR at xxii (Table ES-1). This is reflected in the drastic increase in the number of taker and barge trips documented in the DEIR, up to 361 visits per year, an increase of 121 tanker vessels and 71 barges over baseline.

The DEIR's No Project Alternative shows 170 ship and barge trips per year. DEIR xxvii (Table ES-2). This is not an accurate depiction of the average number of trips over the last few years, nor is it an accurate estimate of how many trips would be taken if this Project were not completed at all. Regardless, the contemplated increase in ship traffic in San Francisco Bay over what currently occurs cannot be understated, as it is truly massive.

²⁷⁷ *California Refinery History;* California Energy Commission: Sacramento, CA. <u>https://www.energy.ca.gov/data-reports/energy-almanac/californias-petroleum-market/californias-oil-refineries/california-oil</u>.

A. The Wharf Throughput Expansion Would Result in Significant Water Quality Impacts, With Attendant Safety Hazards

The water quality impacts from expansion of marine terminal operations must be thoroughly examined, from impacts associated with the extraction and/or production of feed stocks to the dilution of those feedstocks and shipment to other ports, through the loading process onto tankers and the shipping routes they take to San Francisco Bay, then to the unloading of those feedstocks and transport into the refinery, the separation and reuse or disposal of unused portions or diluents, the eventual shipment of refined or reused products to end markets, and finally through to impacts from the use of end products. This lifecycle analysis must take into account global effects such as climate change and ocean acidification, as well as local water quality impacts that could have serious consequences for the communities at production sites, ports, along the shipping routes, and near the actual Project site in Rodeo. This analysis must also disclose the extent to which unknowns exist, such as the lack of concrete information concerning effective marine spill cleanup methodologies for feedstocks and the environmental impacts of such spills, and evaluate the risks taken as a result of those unknowns.

Each tanker trip carries an added risk of a spill, as a reported 50% of large spills occur in open water.²⁷⁸ The majority of spills, however, are less than 200,000 gallons, and most of these spills happen while in port.²⁷⁹ Two types of tanker will likely be used to transport feedstocks to the Facility, coastal tankers, which can carry as much as 340,000 barrels of oil (14.3 million gallons), and coastal tank barges, which typically carry 50,000 to 185,000 barrels of oil, though newer models can carry as much as a coastal tanker. In fact, the DEIR itself states that the maximum capacity of a single ship calling at the terminal is 1 million barrels. DEIR 4.9-330. "Therefore, as tanker/barge volumes could range as high as 1 million barrels, a theoretical maximum spill size from a barge or tanker contents that is used for planning purposes in the USCG-required vessel response plans could range up to 1 million barrels (based on the largest tanker capacity)." DEIR 4.9-330 – 4.9-331. No rationale or explanation is given for the selection of the much lower 10,000-20,000-barrel spill as a worst-case scenario. DEIR 4.9-331. The final EIR must evaluate an actual worst-case scenario instead of the watered down version discussed in the DEIR.

California's 45-billion-dollar coastal economy has a lot to lose to a spill.²⁸⁰ California commercial fisheries for instance, produced from 186-361 million pounds of fish from 2013-2015, at a value of 129-266 million dollars.²⁸¹ After the Costco Busan disaster spilled 53,000 gallons of oil into San Francisco Bay, the Governor closed the fishery, a significant portion of which was either contaminated or killed, closed more than 50 public beaches, some as far south as Pacifica, and thousands of birds died. All told that spill resulted in more than 73 million dollars in estimated damages and cleanup costs.²⁸²

²⁷⁸ The International Tanker Owners Pollution Federation (2016 spill statistics), p. 8.

²⁷⁹ Id.

²⁸⁰ California Ocean and Coastal Economies, National Ocean Economics Program (March 2015).

²⁸¹ Based on California Department of Fish and Wildlife and National Marine Fisheries Service data.

²⁸² See, e.g., Incident Specific Preparedness Review M/V Cosco Busan Oil Spill in San Francisco Bay Report on Initial Response Phase, Baykeeper, OSPR, NOAA, et al. (Jan. 11, 2008).

A DEIR evaluating the environmental impacts of expanding operations at the Phillips 66 Marine Terminal must take into account the increased risk of a spill into San Francisco Bay or at any other point along the route transport tankers and barges will take. "Any increase in risk is considered to be a significant impact." DEIR 4.9-320. However, the DEIR fails to evaluate impacts from the handling of hazardous materials along transportation corridors, and from the presence of hazardous materials along shorelines in the event of a spill. DEIR 4.9-322 ("No existing or proposed schools are located within 0.25 mile of the Rodeo Site or the Carbon Plant Site; therefore, no hazardous materials would be handled within 0.25 mile of an existing school. Therefore, no impact would occur"). The final EIR must remedy this error.

Uncertainty over how to clean up spills of feedstocks extends to the specific technology used for cleanup efforts. "The environmental impacts associated with oil spill clean-up efforts (e.g. mechanical or chemical) may increase the magnitude of ecological damage and delay recovery."²⁸³ Recent surveys have not found any studies on the response of "trophic groups within eelgrass and kelp forest ecosystems to bitumen in the environment, or the impacts of different spill-response methods."²⁸⁴

Operation of the Project could result in discharges into waters of the San Pablo and San Francisco Bays from vessels (barges and tankers) transporting feedstocks and blending stocks to, and refined products from, the Marine Terminal. At full operation, 201 tankers and 161 barges would call each year, an increase of approximately 113 percent over baseline. Therefore, potential impacts related to vessel spills would be significant.

DEIR 4.9-331. The final EIR must do more to evaluate these impacts.

There are additional mitigation measures that should be considered and included in the final EIR to help mitigate spill risk. First, all ships carrying feedstocks, petroleum products, or any other hazardous material that could spill into San Francisco Bay or any of the other waters along the Project's transport routes should be double-hulled. "Recent studies comparing oil spillage rates

from tankers based on hull design seem to suggest that double hull tankers spill less than pre-MARPOL single hull tankers, double bottom tankers, and double sided tankers."²⁸⁵ Second, incentives for vessel speed reductions, as well as documentation and tracking of vessel speeds, as detailed elsewhere in these comments, would also reduce spill risks. Finally, additional yearly funding for the study of feedstock spills, the impact of such spills, and the most effective cleanup and mitigation methodologies would also help mitigate this risk and should be included in the final EIR.

²⁸³ Green *et al.*, 2017.

²⁸⁴ Id.

²⁸⁵ A Review of Double Hull Tanker Oil Spill Prevention Considerations, Nuka Research & Planning Group, LLC. (Dec. 2009), p. 3, available at <u>https://www.pwsrcac.org/wp-</u> content/uploads/filebase/programs/oil spill prevention planning/double hull tanker review.pdf.

A recent spill at the Phillips 66 Marine Terminal serves as a warning of what could result from increased marine terminal operations. According to press reports, "BAAQMD issued two 'public nuisance' violations to Phillips 66 for its Sept. 20, 2016 spill, which leaked oil into the bay and sent an estimated 120 people to the hospital from fumes."²⁸⁶ That spill, which occurred while the Yamuna Spirit was offloading at the Phillips 66 Marine Terminal in Rodeo, was responsible for more than 1,400 odor complaints and a shelter-in-place order for the 120,000 residents of Vallejo, in addition to the hospital visits already mentioned.²⁸⁷ The DEIR disavows responsibility for this incident, claiming (in spite of BAAQMD's contrary finding) that "An investigation ruled out the Marine Terminal and the Rodeo Refinery as the source." DEIR 4.9-296.

Instead, the DEIR claims that

A release at the Marine Terminal would not present a significant safety hazard to members of the public due to the separation distance from public receptor locations. Even for low-probability large spills from the Marine Terminal, it is anticipated that separation distance of the Marine Terminal from public areas would provide time to respond with warnings and access controls before the spill could spread to public areas, which would limit the potential for unsafe levels of exposure to hazardous constituents in the spilled product or thermal radiation from a fire. Therefore, impacts from a spill and subsequent fire at the Marine Terminal would be less than significant.

DEIR 4.9-330. 120 people who went to the hospital in Vallejo may disagree that a release from the terminal would not represent a significant safety hazard. Spill events are also high variance, in that they are relatively unlikely to occur, and high impact, in that the repercussions of such an event have the potential to cause extensive damage. Typical baseline analysis, therefore, is inappropriate. A baseline analysis that said there was no risk of tanker spills based on baseline data from the previous 3 years, for instance, would be clearly inadequate in hindsight after an event like the Exxon Valdez. So, too, here, spill risk in the final EIR must be calculated and mitigated based on the worst case scenario, not on a baseline compiled over recent years that do not include any major oil spills.

In light of these concerns, Contra Costa must consider an independent study on feedstock cleanup, the adequacy of existing cleanup procedures and the need for additional cleanup and restitution funds, and increased monitoring for water and air quality impacts to communities surrounding the Project, whether those communities are located in the same county or not. Furthermore, the Bay Area Air Quality Management District should be considered as a responsible agency.

²⁸⁶ Katy St. Clair, "Supervisor Brown says 'no way' to proposed Phillips 66 expansion," Times-Herald (Aug. 5, 2017), *available at* http://www.timesheraldonline.com/article/NH/20170805/NEWS/170809877; *see also* Ted Goldberg, "Refinery, Tanker Firm Cited for Fumes That Sickened Scores in Vallejo," KQED News (June 16, 2017), *available at* https://ww2.kqed.org/news/2017/06/16/refinery-tanker-firm-cited-for-fumes-that-sickened-scores-in-vallejo/; Ted Goldberg, "Phillips 66 Seeks Huge Increase in Tanker Traffic to Rodeo Refinery," KQED News (July 27, 2017) (*available at* https://ww2.kqed.org/news/2017/07/27/phillips-66-seeks-big-increase-in-tanker-traffic-to-rodeo-refinery/.

²⁸⁷ Ted Goldberg, "Refinery, Tanker Firm Cited for Fumes That Sickened Scores in Vallejo," *id*.

As pointed out by California State Senator Bill Dodd, it is vital that the causes of this spill be thoroughly investigated and a determination made on how such a spill can be prevented in the future.²⁸⁸ Such an investigation must be completed before any additional ships are authorized to use the same marine terminal where the spill was reported. Without a thorough report on past spills that includes a description of what happened and how such accidents can be prevented in the future, the DEIR will not be able to adequately evaluate the Project's potential environmental impacts.

Additional National Pollutant Discharge Elimination System ("NPDES") effluent criteria may be needed, a possibility which must be—but is not—evaluated in the DEIR. Foreseeable spill rates from an increase in marine terminal activity might qualify as a discharge to waters of the United States because it is reasonably predictable that a certain number of spills will occur. With this and other water quality impacts in mind, the regional water board should at least be another responsible agency, if not the lead agency evaluating a permit to increase marine terminal operations. Furthermore, different feedstock may result in a change in the effluent discharged by the refinery under their existing NDPES permit, another reason why the regional water board should at least be a responsible party. The DEIR must evaluate an updated NPDES permit that reflects the changing feedstock that will result from the Project.

No reasonable mitigation or planning can be done with regard to the risk posed by the transport of feedstocks to the Phillips 66 refinery in Rodeo without specific information as to the chemical composition of the feedstocks being transported. Details on the types of feedstock expected to arrive on the tankers utilizing the Marine Terminal's expanded capacity must be part of the DEIR and must be made publicly available. It is irresponsible to conduct risk assessment and best practices for the handling of feedstocks without at least knowing exactly what the chemical composition of the feedstock is, and how it differs from conventional oil. Additional research into best management practices, spill prevention practices, and cleanup and response planning is needed before permitting a major increase in the amount of refinery-bound tanker traffic coming into California's waters.

We ask that the final EIR contain and make publicly available an independent scientific study on the risks to – and best achievable protection of – state waters from spills of feedstocks. This study should evaluate the hazards and potential hazards associated with a spill or leak of feedstocks. The study should encompass potential spill impacts to natural resources, the public, occupational health and safety, and environmental health and safety. This analysis should include calculations of the economic and ecological impacts of a worst-case spill event in the San Francisco Bay ecosystem, along the California coast, and along the entire projected shipping route for the expanded marine terminal.

Based on this study, the final EIR should also include a full review of the spill response capabilities and criteria for oil spill contingency plans and oil spill response organizations (OSROs) responsible for remediating spills. We respectfully request that the final EIR include

²⁸⁸ See Senator Bill Dodd, Letter Re: Vallejo Odor and Bay Area Air Quality Management District Response (March 8, 2017), available at <u>https://www.documentcloud.org/documents/3514729-Sen-Dodd-BAAQMD-Letter-3-8-17.html</u>.

an analysis indicating whether there are OSROs currently operating in California capable of responding adequately to a spill of the contemplated feedstocks. Further, the adequacy of an OSRO's spill response capability should be compared to the baseline of no action rather than to a best available control technology standard.

While California's regulatory agencies have recently been granted cleanup authority over spills of biologically-derived fuel products, no such authority or responsibility has been granted for feedstocks. If there are no current plans for OSROs to respond to spills of feedstocks in California waters, the final EIR must evaluate the impacts of such a spill under inadequate cleanup scenarios. The DEIR fails to adequately evaluate how spills of feedstocks will be remediated, if at all.

Additional ships delivering oil to the Project would be passing through a channel that the Army Corps of Engineers has slated for reduced dredging. The Project thus contemplates increasing ship traffic through a channel that could be insufficiently dredged. The final EIR must evaluate the safety risks posed by reduced Pinole Shoal Navigation Channel Maintenance Dredging.²⁸⁹ Should Phillips 66 be required to dredge the channel, it must fully evaluate and disclose impacts from such dredging in its environmental analysis.

Finally, the final EIR must evaluate ship maintenance impacts. Increased shipping means increased maintenance in regional shipyards and at regional anchorages, and these impacts must be analyzed.

B. The DEIR Wrongly Concludes There Would be No Aesthetic Impacts

The DEIR claims that there would be no aesthetic impacts, and fails to analyze the significant increase in ship traffic. DIER xxix (Table ES-3). San Francisco Bay is considered a world class scenic vista, with billions of dollars of tourism dependent on a setting of natural beauty. The DEIR even acknowledges that "[b]ackground views of the bay provide a scenic quality." DEIR 4.2-12. Yet minimal analysis has been done of what impact such a drastic increase in ship traffic would do to San Francisco Bay's aesthetics, including a significant new source of light or glare (ships).

Marine traffic in San Pablo Bay is part of the existing visual character. The San Pablo Bay has other industrial shipping facilities and marine terminals in proximity to the Rodeo Site that contribute to vessel traffic in the Bay. The proposed increase in marine traffic may result in a slight degradation of the natural views of the Bay and from the Bay of the surrounding natural landscape and hillsides. However, given the existing industrial visual character of the Rodeo Refinery and current Marine

²⁸⁹ Memorandum for Commander, South Pacific Division (CWSPD-PD), FY 17 O&M Dredging of San Francisco (SF) Bay Navigation Channels, U.S. Army Corps of Engineers (Jan. 12, 2017) (Army Corps memo discussing deferred dredging).

Terminal activity, the increase in marine traffic would not be highly noticeable. Impacts on scenic views would be less than significant. No mitigation is required.

DEIR 4.2-27. Tripling ship traffic and then stating it does not constitute an impact because the area is already degraded by the same sorts of impacts is false, cynical, and ignores environmental justice concerns. The final EIR must take a hard look at these impacts, as well as impacts along expected transportation corridors and impacts from an increase in spill risk.

C. Air Quality Impacts Must Be Evaluated for an Adequate Study Area

Air quality impacts evaluated by the DEIR must include an adequate study area in order to appropriately estimate the Project's potential to result in substantial increases in criteria pollutant emissions. An increase to 361 ships per year carries with it obvious air quality impacts from ship exhaust. DEIR 4.3-70 ("marine traffic annual mass emissions are expected to increase during the Project due to increased vessel traffic"). These impacts must be evaluated by location, as is done for rail impacts (*see* DEIR 4.3-72, "Rail Transport Outside the SFBAAB (Significant and Unavoidable, Mitigation Pre-Empted)"), for every mile the ships travel, and for every community along their route, not just between the refinery and various anchorage points. The DEIR fails to do so, and also fails to evaluate health impacts from these routes and at various locations. Ships will not arrive at the Project terminal from out of a vacuum, and each additional ship beyond those currently in fact using the terminal – not just those currently permitted – must be evaluated.

Phillips 66 does not have a good record of avoiding air quality violations at its Rodeo refinery. Within the last couple of years, BAAQMD settled for nearly \$800,000 with Phillips 66 for 87 air quality violations between 2010 and 2014.²⁹⁰ Such past violations must be evaluated when considering the likelihood of future violations that may relate to a change in feed stock or increased refinery activity as a result of the marine terminal expansion.

Provision of shore power should also be considered as a mitigation measure.

D. Recreational Impacts Are Potentially Significant

The DEIR states that there is no possibility of impact to recreation and that it has been eliminated from detailed analysis. DEIR 4-6 (4.1.5 Recreation). This is error. San Francisco Bay is a massive recreational area, and the increase in maritime traffic has a direct impact on opportunities for recreation on the Bay. Increased ship traffic qualifies as substantial physical deterioration of an existing facility. In addition, spills of feedstocks or finished products either from ships moving to and from the refinery or from the refinery itself have the potential to impact existing recreational sites. The DEIR contemplates a huge increase in the amount of product carried by ship across the Pacific Ocean and through San Francisco Bay, and each additional trip carries with it an increased chance of a spill. The final EIR must evaluate

²⁹⁰ "Air District settles case with Phillips 66," BAAQMD Press Release (August 3, 2016), *available at* <u>http://www.baaqmd.gov/~/media/files/communications-and-outreach/publications/news-releases/2016/settle_160803_phillips-pdf.pdf?la=en</u>.

recreational impacts from increased ship traffic and spill risk, both in San Francisco Bay and at every point along contemplated transportation corridors.

E. The Project Implicates Potential Utilities and Service System Impacts

The DEIR states that there is no possibility of impacts to utilities and service systems and that it has been eliminated from detailed analysis. DEIR 4-7 (4.1.6 Utilities and Service Systems). This is error. The increase in maritime traffic has a direct impact on ship maintenance, anchorages, and upkeep on the Bay. Increased ship traffic would accelerate deterioration of existing facilities. In addition, spills of feedstocks or finished products either from ships moving to and from the refinery or from the refinery itself have the potential to impact existing ship facilities. The DEIR contemplates a huge increase in the amount of product carried by ship across the Pacific Ocean and through San Francisco Bay, and each additional trip carries with it an increased chance of a spill. The final EIR must evaluate utility and service system impacts from increased ship traffic and spill risk, both in San Francisco Bay and at every point along contemplated transportation corridors.

F. Biological Impacts and Impacts to Wildlife are Potentially Significant and Inadequately Mitigated

The DEIR makes clear that there are numerous special status marine and aquatic species present, yet does not sufficiently protect these species. For each of the following impact areas, we request that adequate mitigation be evaluated and applied for each species type.

Increased shipping as a result of biofuel production and transport causes stress to the marine environment and can thus impact wildlife. Wake generation, sediment re-suspension, noise pollution, animal-ship collisions (or ship strikes), and the introduction of non-indigenous species must all be studied as a part of the EIR process. "Wake generation by large commercial vessels has been associated with decreased species richness and abundance (Ronnberg 1975) given that wave forces can dislodge species, increase sediment re-suspension (Gabel et al. 2008), and impair foraging (Gabel et al. 2011)."²⁹¹ Wake generation must be evaluated as an environmental impact of the Project.

The DEIR contains ample data supporting vessel speed reduction as a means to avoid adverse impacts from ship strikes. *See, e.g.*, DEIR 4.4-128. Yet vessel speed reductions are not mandatory, and there is no requirement that the increased vessel traffic contemplated by the Project would adhere to speed recommendations to protect wildlife. The mitigation measures proposed by the DEIR amount to nothing more than sending some flyers. The final EIR should contemplate additional mitigation that includes tracking actual vessel speeds and mitigation for vessels that exceed 10 knots, as well as incentives for vessels to adhere to recommended speeds such as monetary bonuses or fines. Mitigation Measures BIO-1(a) and (b) are insufficient because they do not contemplate effective measures to ensure safe vessel speeds and to mitigate for exceedances.

²⁹¹ Green *et al*. 2017.

Acoustic impacts can also be extremely disruptive. As the DEIR points out, "broadly elevated underwater noise and concentration may occur in areas with major ports and harbors (Erbe et al. 2012; Redfern et al. 2017)." DEIR 4.4-130. "Increased tanker traffic threatens marine fish, invertebrate, and mammal populations by disrupting acoustic signaling used for a variety of processes, including foraging and habitat selection (e.g. Vasconcelos et al. 2007; Rolland et al. 2012), and by physical collision with ships – a large source of mortality for marine animals near the surface along shipping routes (Weir and Pierce 2013)."²⁹² Acoustic impacts must be evaluated as an environmental impact of the Project. However, in spite of the DEIR's admission that porpoises have a threshold for injury of 173 dB, and that median vessel sound levels would be 177.9-178.1 dB, it still finds only minimal disturbance and concludes that "No noise-related injuries would be expected." DEIR 4.4-132 – 4.4-133. This discrepancy must be explained in the final EIR, and mitigation measures, such as reducing vessel speed and the other potential mitigations listed in the DEIR (though not implemented, *see* DEIR 4.4-134) must be implemented and incentivized. In addition, the DEIR must require that acoustic safeguards comport with recent scientific guidance for evaluating the risk to marine species.²⁹³

Oil spill impacts are not adequately evaluated for biological resources and wildlife in the DEIR. The DEIR erroneously assumes that spills feedstocks for biofuels can be treated the same as petroleum-based spills. *See, e.g.*, DEIR 4.4-139. There is no evidence that this is the case presented in the DEIR, and there is no evidence that current spill response capabilities are capable of or even authorized to respond to spills of non-petroleum feedstocks. The DEIR's proposed mitigation measures are insufficient to address these concerns.

Invasive species are also a dangerous side effect of commercial shipping. "Tankers also serve as a vector for the introduction of non-indigenous species (NIS) via inadvertent transfer of propagules from one port to another (Drake and Lodge 2004), with the probability of introduction depending on the magnitude and origin of shipping traffic along tanker routes (Table 1 and Figure 3; Lawrence and Cordell 2010)." Invasive species impacts must be evaluated as an environmental impact of the Project. Yet the DEIR's mitigation measures are insufficient. Again, sending a flyer does not prevent the problems identified in the DEIR. DEIR 4.4-142. Additional recommended mitigation measures include incentives for ballast water remediation that ensures protection of sensitive areas and requiring documentation of ballast water exchanges from all visiting ships.

In addition, the GHG emissions from the Project will contribute to climate change and in turn harm marine species. The combined GHG emissions from the facility, increased vessel traffic, and upstream and downstream emissions will have adverse impacts on marine species through temperature changes and ocean acidification. These changes may trigger changes to population distributions or migration, making ship strikes in some areas more likely.²⁹⁴

²⁹² Id.

²⁹³ See Southall et al., Marine Mammal Noise Exposure Criteria: Assessing the Severity of Marine Mammal Behavioral Responses to Human Noise, *Aquatic Mammals*, (2021) 47(5), 421-464.

²⁹⁴ See Redfern et al., Effects of Variability in Ship Traffic and Whale Distributions on the Risk of Ships Striking Whales, *Frontiers in Marine Science* (Feb. 2020) Vol. 6, art. 793.

G. Noise and Vibration Impact Analysis is Insufficient

According to the DEIR, "[t]he Project would not result in an increased number of vessels calling at the Marine Terminal on a peak day. Accordingly, noise levels would not increase as a result of peak-day vessel activity." DEIR 4.12-396. This analysis is insufficient. The DEIR admits that overall vessel trips will drastically increase, but no analysis is made of what noise impacts will result from the increased number of vessels. The final EIR must evaluate noise impacts associated with the increase in vessel trips.

H. Transportation and Traffic Impacts Analysis is Inadequate

Additional impacts must be analyzed starting at the port that ships associated with the Project take on their cargos and ending at the ports they discharge it to. The EIR should include shipping impacts to public or non-Project commercial vessels and businesses, including impacts to recreational boaters and ferries, that might experience increased delay, anchorage waits or related crowding, and increased navigational complexity. Collision and spill analysis should not be limited to just the vessels calling at the marine terminal associated with the Project: increased ship traffic could result in accidents among other ships or waterborne vessels. This likelihood must be analyzed in the final EIR, just as vehicular traffic increases are analyzed for their impact on overall accident rates and traffic, generally. Such shipping traffic impact evaluations should extend to spills, air quality, marine life impacts from ship collisions, and other environmental impacts evaluated by the DEIR that could impact shipping traffic.

I. Tribal Cultural Resources Impacts Analysis is Inadequate

The only tribal cultural impacts examined by the DEIR are construction impacts. But many of the people who historically called this area home had an intimate relationship with the Bay and the water, so impacts from increased marine terminal use and increased shipping traffic, as well as associated increased spill risk and impacts to fish and wildlife, must be examined in the final EIR as well. Examples of tribes that should be consulted include the Me-Wuk (Coast Miwok), the Karkin, the Me-Wuk (Bay Miwok), the Confederated Villages of Lisjan, Graton Rancheria, the Muwekma, the Ramaytush, and the Ohlone.

J. The Project Risks Significant Environmental Justice and Economic Impacts

To the extent the Project utilizes offsets or credits, these have an undue impact on disadvantaged and already polluted communities, and the environmental justice impacts of such use must be evaluated. Violations, such as the air quality violations referenced above, also have an undue impact on disadvantaged and already polluted communities, impacts that cannot be addressed through monetary penalties.

Rodeo ranks in the top 8% of the state's highest concentration of hazardous waste facilities, has a high concentration of contamination from Toxic Release Inventory chemicals,

ranking in the top 3% for that factor.²⁹⁵ Moreover, Rodeo also suffers from a high rate of low birth weights and asthma, ranking in the top 1% and 16%, respectively.²⁹⁶

Fisheries would also be a major casualty of any large spill, and struggling fishing communities would be hardest hit by such impacts. Dungeness crab landings, for instance, were 3.1 million pounds in 2015, down almost 83% from the year before, with Oregon landings down a similar percentage.²⁹⁷ Additional stress on these fisheries as a result of a spill or from other impacts from increased tanker traffic could have catastrophic consequences that need to be examined in the final EIR. Overall, California produced 366 million pounds of fish worth 252.6 million dollars in 2014 and 195 million pounds of fish worth 143.1 million dollars in 2015, and threats to this industry that result from the Project must be evaluated in the EIR.

K. The DEIR Fails to Disclose and Analyze Significant Additional Impacts

1. Public Trust Resources

The marine terminal that the Project targets for drastically increased ship traffic occupies 16.7 acres of leased land, filled and unfilled. This land is California-owned sovereign land in San Pablo Bay, and as a result the California State Lands Commission is a responsible party. Public trust impacts to this land and to other public trust resources must be evaluated in the final EIR.

2. Cross-Border Impacts

Shipping and ship traffic impacts extend across state and national borders. The final EIR must take into account environmental impacts that occur outside of California as a result of actions within California.

3. <u>Terrorism Impacts</u>

More ships bring increased risk. Anti-terrorism and security measures, as well as the potential impacts from a terrorist or other non-accidental action, must be evaluated in the final EIR.

XII. CONCLUSION

We request that the County address and correct the errors and deficiencies in the DEIR explained in this Comment. Given the extensive additional information that needs to be provided in an EIR to satisfy the requirements of CEQA, we request that the new information be included in a recirculated DEIR to ensure that members of the public have full opportunity to comment on it.

²⁹⁵ OEHHA, Cal Enviro Screen 1.1 (amended), Statewide Zip Code Results, Rodeo, available at

http://oehha.maps.arcgis.com/apps/OnePane/basicviewer/index.html?appid=1d202d7d9dc84120ba5aac97f8b39c56. ²⁹⁶ *Id.*

²⁹⁷ See 2015 NOAA Fisheries of the United States.

Thank you for your consideration of these Comments.

Very truly yours,

Megan Zapanta Richmond Organizing Director Asian Pacific Environmental Network <u>megan@apen4ej.org</u>

Gary Hughes California Policy Monitor Biofuelwatch <u>Garyhughes.bfw@gmail.com</u>

Neena Mohan Climate Justice Program Director California Environmental Justice Alliance neena@caleja.org

Hollin Kretzmann Staff Attorney, Climate Law Institute Center for Biological Diversity hkretzmann@biologicaldiversity.org

Ken Szutu Director Citizen Air Monitoring Network KenSzutu@gmail.com

Connie Cho; Dan Sakaguchi Attorney; Staff Researcher Communities for a Better Environment <u>ccho@cbecal.org</u>; <u>dan@cbecal.org</u>

Greg Karras Senior Scientist Community Energy resource <u>gkarrasconsulting@gmail.com</u>

Leah Redwood Action Coordinator Extinction Rebellion San Francisco Bay Area <u>leahredwood@icloud.com</u> Clair Brown Research Lead Fossil Free California <u>cbrown@econ.berkeley.edu</u>

Marcie Keever Oceans & Vessels Program Director Friends of the Earth <u>mkeever@foe.org</u>

William McGarvey Director Interfaith Climate Action Network of Contra Costa County eye4cee@gmail.com

Ann Alexander Senior Attorney Natural Resources Defense Council aalexander@nrdc.org

Gemma Tillack Forest Policy Director Rainforest Action Network gemma@ran.org

Claudia Jimenez Co-Chair Richmond Progressive Alliance jimenez.claudia78@gmail.com

Charles Davidson Rodeo Citizens Association <u>charlesdavidson@me.com</u>

M. Benjamin Eichenberg Staff Attorney San Francisco Baykeeper ben@baykeeper.org

Matt Krough US Oil & Gas Campaign Director Stand.Earth matt.krough@stand.earth Ellie Cohen, CEO The Climate Center ellie@theclimatecenter.org Shoshana Wechsler Coordinator Sunflower Alliance action@sunflower-alliance.org

Jackie Garcia Mann Leadership Team 350 Contra Costa jackiemann@att.net

APPENDIX A

Karras, G., *Changing Hydrocarbons Midstream* (Karras, 2021a)

Fuel chain carbon lock-in potential of crudeto-biofuel petroleum refinery repurposing

Prepared for the Natural Resources Defense Council (NRDC), by Greg Karras, G Karras Consulting <u>www.energy-re-source.com</u>

August 2021

ABSTRACT

Moves to deoxygenate farmed lipids with hydrogen by repurposing troubled crude refining assets for "drop in" biofuels add a new carbon source to the liquid hydrocarbon fuel chain, with the largest biorefineries of this type that the world has ever seen now proposed in California. Characteristics of this particular biofuel technology were assessed across its shared fuel chain with petroleum for path-dependent feedstock acquisition, processing, fuel mix, and energy system effects on the environment at this newly proposed scale. The analysis was grounded by site-specific data in California.

This work found significant potential impacts are foreseeable. Overcommitment to purposegrown biomass imports could shift emissions out of state instead of sequestering carbon. Fossil fuel assets repurposed for hydrogen-intensive deoxygenation could make this type of biorefining more carbon intensive than crude refining, and could worsen refinery fire, explosion, and flaring hazards. Locked into making distillate fuels, this technology would lock in diesel and compete with zero-emission freight and shipping for market share and hydrogen. That path-dependent impact could amplify, as electric cars replace gasoline and idled crude refining assets repurpose for more biomass carbon, to turn the path of energy transition away from climate stabilization. Crucially, this work also found that a structural disruption in the liquid hydrocarbon fuel chain opened a window for another path, to replace the freight and shipping energy function of crude refining without risking these impacts. The type and use of hydrogen production chosen will be pivotal in this choice among paths to different futures.

ACRONYMS AND TERMS

Barrel (b):	A barrel of oil is a volume of 42 U.S. gallons.
BEV:	Battery-electric vehicle.
Biofuel:	Hydrocarbons derived from biomass and burned for energy.
Biomass:	Any organic material that is available on a recurring basis, excluding fossil fuels.
Carbon intensity:	The amount of climate emission caused by a given amount of activity at a particular emission source. Herein, CO_2 or CO_2 e mass per barrel refined, or SCF hydrogen produced.
Carbon lock-in:	Resistance to change of carbon-emitting systems that is caused by mutually reinforcing technological, capital, institutional, and social commitments to the polluting system which have become entrenched as it was developed and used. A type of path dependance.
Catalyst:	A substance that facilitates a chemical reaction without being consumed in the reaction.
Ester:	A molecule or functional group derived by condensation of an alcohol and an acid with simultaneous loss of water. Oxygen, carbon, and other elements are bonded together in esters.
Electrolysis:	Chemical decomposition produced by passing an electric current through a liquid or solution containing ions. Electrolysis of water produces hydrogen and oxygen.
FCEV:	Fuel cell electric vehicle.
HDO:	Hydrodeoxygenation. Reactions that occur in HEFA processing.
HEFA:	Hydrotreating esters and fatty acids. A biofuel production technology.
Hydrocarbon:	A compound of hydrogen and carbon.
Lipids:	Organic compounds that are oily to the touch and insoluble in water, such as fatty acids, oils, waxes, sterols, and triacylglycerols (TAGS). Fatty acids derived from TAGs are the lipid-rich feedstock for HEFA biofuel production.
MPC:	Marathon Petroleum Corporation, headquartered in Findlay, OH.
P66:	Phillips 66 Company, headquartered in Houston, TX.
SCF:	Standard cubic foot. 1 ft^3 of gas that is not compressed or chilled.
TAG:	Triacylglycerol. Also commonly known as triglyceride.
Ton (t):	Metric ton.
ZEV:	Zero-emission vehicle.

CONTENTS

Acronyms and Terms	i
Findings and Takeaways	iii
Introduction	1
1. Overview of HEFA Biofuel Technology	7
2. Upstream — Impact of Feedstock Choices	11
3. Midstream — HEFA Process Environmental Impacts	19
4. Downstream — Impact of Biofuel Conversions on Climate Pathways	28
Literature cited	45

Supporting Material — Separately Bound Appendix¹

FINDINGS AND TAKEAWAYS

Finding 1. Oil companies are moving to repurpose stranded and troubled petroleum assets using technology called "Hydrotreated Esters and Fatty Acids" (HEFA), which converts vegetable oil and animal fat lipids into biofuels that refiners would sell for combustion in diesel engines and jet turbines. The largest HEFA refineries to be proposed or built worldwide to date are now proposed in California.

Takeaways

- F1.1 Prioritizing industry asset protection interests ahead of public interests could lock in HEFA biofuels instead of cleaner alternatives to petroleum diesel and jet fuel.
- F1.2 HEFA refining could continue to expand as refiners repurpose additional crude refining assets that more efficient electric cars will idle by replacing gasoline.
- F1.3 Assessment of potential impacts across the HEFA fuel chain is warranted before locking this new source of carbon into a combustion-based transportation system.
- **Finding 2.** Repurposing refining assets for HEFA biofuels could increase refinery explosion and fire hazards. Switching from near-zero oxygen crude to 11 percent oxygen biomass feeds would create new damage mechanisms and intensify hydrogendriven exothermic reaction hazards that lead to runaway reactions in biorefinery hydro-conversion reactors. These hydrogen-related hazards cause frequent safety incidents and even when safeguards are applied, recurrent catastrophic explosions and fires, during petroleum refining. At least 100 significant flaring incidents traced to these hazards occurred since 2010 among the two refineries where the largest crude-to-biofuel conversions are now proposed. Catastrophic consequences of the new biorefining hazards are foreseeable.

- F2.1 Before considering public approvals of HEFA projects, adequate reviews will need to report site-specific process hazard data, including pre-project and postproject equipment design and operating data specifications and parameters, process hazard analysis, hazards, potential safeguards, and inherent safety measures for each hazard identified.
- F2.2 County and state officials responsible for industrial process safety management and hazard prevention will need to ensure that safety and hazard prevention requirements applied to petroleum refineries apply to converted HEFA refineries.

Finding 3. Flaring by the repurposed biorefineries would result in acute exposures to episodic air pollution in nearby communities. The frequency of these recurrent acute exposures could increase due to the new and intensified process safety hazards inherent in deoxygenating the new biomass feeds. Site-specific data suggest bimonthly acute exposure recurrence rates for flare incidents that exceed established environmental significance thresholds. This flaring would result in prolonged and worsened environmental justice impacts in disparately exposed local communities that are disproportionately Black, Brown, or low-income compared with the average statewide demographics.

Takeaways

- F3.1 Before considering public approvals of HEFA projects, adequate reviews will require complete analyses of potential community-level episodic air pollution exposures and prevention measures. Complete analyses must include worst-case exposure frequency and magnitude with impact demographics, apply results of process hazard, safeguard, and inherent safety measures analysis (F2.1), and identify measures to prevent and eliminate flare incident exposures.
- F3.2 The Bay Area, San Joaquin Valley, and South Coast air quality management districts will need to ensure that flare emission monitoring and flaring prevention requirements applied to petroleum refineries apply to converted HEFA refineries.
- **Finding 4.** Rather than contributing to a reduction in emissions globally, HEFA biofuels expansion in California could actually shift emissions to other states and nations by reducing the availability of limited HEFA biofuels feedstock elsewhere. Proposed HEFA refining for biofuels in California would exceed the per capita state share of total U.S. farm yield for all uses of lipids now tapped for biofuels by 260 percent in 2025. Foreseeable further HEFA growth here could exceed that share by as much as 660 percent in 2050. These impacts are uniquely likely and pronounced for the type of biomass HEFA technology demands.

- F4.1 A cap on in-state use of lipids-derived biofuel feedstocks will be necessary to safeguard against these volume-driven impacts. *See also Takeaway F6.1*.
- F4.2 Before considering public approvals of HEFA projects, adequate reviews will need to fully assess biomass feedstock extraction risks to food security, lowincome families, future global farm yields, forests and other natural carbon sinks, biodiversity, human health, and human rights using a holistic and precautionary approach to serious and irreversible risks.
- F4.3 This volume-driven effect does not implicate the Low Carbon Fuel Standard and can only be addressed effectively via separate policy or investment actions.

Finding 5. Converting crude refineries to HEFA refineries would increase the carbon intensity of hydrocarbon fuels processing to 180–240 percent of the average crude refinery carbon intensity nationwide. Refiners would cause this impact by repurposing otherwise stranded assets that demand more hydrogen to deoxygenate the type of biomass the existing equipment can process, and supply that hydrogen by emitting some ten tons of carbon dioxide per ton of hydrogen produced. In a plausible HEFA growth scenario, cumulative CO₂ emissions from continued use of existing California refinery hydrogen plants alone could reach 300–400 million metric tons through 2050.

Takeaways

- **F5.1** Before considering public approvals of HEFA projects, adequate reviews will need to complete comprehensive biorefinery potential to emit estimates based on site-specific data, including project design specifications, engineering for renewable-powered electrolysis hydrogen capacity at the site, and potential to emit estimates with and without that alternative. *See also Takeaways F7.1–4.*
- **Finding 6.** HEFA biofuels expansion that could be driven by refiner incentives to repurpose otherwise stranded assets is likely to interfere with state climate protection efforts, in the absence of new policy intervention. Proposed HEFA plans would exceed the lipids biofuel caps assumed in state climate pathways through 2045 by 2025. Foreseeable further HEFA biofuels expansion could exceed the maximum liquid hydrocarbon fuels volume that can be burned in state climate pathways, and exceed the state climate target for emissions in 2050.

- **F6.1** A cap on lipids-derived biofuels will be necessary to safeguard against these HEFA fuel volume-driven impacts. *See also Takeaway F4.1.*
- F6.2 Oil company incentives to protect refining and liquid fuel distribution assets suggest HEFA biofuels may become locked-in, rather than transitional, fuels.
- F6.3 A cap on HEFA biofuels would be consistent with the analysis and assumptions in state climate pathways.

Finding 7. A clean hydrogen alternative could prevent emissions, spur the growth of zero-emission fuel cell vehicle alternatives to biofuels, and ease transition impacts. Early deployment of renewable-powered electrolysis hydrogen production at California crude refineries during planned maintenance or HEFA repurposing could prevent 300–400 million metric tons of CO₂ emissions through 2050 and support critically needed early deployment of energy integration measures for achieving zero emission electricity and heavy-duty vehicle fleets.

Moreover, since zero-emission hydrogen production would continue on site for these zero-emission energy needs, this measure would lessen local transition impacts on workers and communities when refineries decommission.

- F7.1 This feasible measure would convert 99 percent of current statewide hydrogen production from carbon-intensive steam reforming to zero-emission electrolysis. This clean hydrogen, when used for renewable grid balancing and fuel cell electric vehicles, would reap efficiency savings across the energy system.
- F7.2 Early deployment of the alternatives this measure could support is crucial during the window of opportunity to break free from carbon lock-in which opened with the beginning of petroleum asset stranding in California last year and could close if refiner plans to repurpose those assets re-entrench liquid combustion fuels.
- F7.3 During the crucial early deployment period, when fuel cell trucks and renewable energy storage could be locked out from use of this zero-emission hydrogen by excessive HEFA growth, coupling this electrolysis measure with a HEFA biofuel cap (*F4.1; F6.1*) would greatly increase its effectiveness.
- F7.4 Coupling the electrolysis and HEFA cap measures also reduces HEFA refinery hazard, localized episodic air pollution and environmental justice impacts.
- F7.5 The hydrogen roadmap in state climate pathways includes converting refineries to renewable hydrogen, and this measure would accelerate the deployment timeline for converting refinery steam reforming to electrolysis hydrogen production.

INTRODUCTION

i.1 Biofuels in energy systems

Fossil fuels redefined the human energy system. Before electric lights, before gaslights, whale oil fueled our lanterns. Long before whaling, burning wood for light and heat had been standard practice for millennia. Early humans would learn which woods burned longer, which burned smokier, which were best for light, and which for heat. Since the first fires, we have collectively decided on which biofuel carbon to burn, and how much of it to use, for energy.

We are, once again, at such a collective decision point. Biofuels—hydrocarbons derived from biomass and burned for energy—seem, on the surface, an attractive alternative to crude oil. However, there are different types of biofuels and ways to derive them, each carrying with it different environmental impacts and implications. Burning the right type of biofuel for the right use *instead* of fossil fuels, such as cellulose residue-derived instead of petroleum-derived diesel for old trucks until new zero emission hydrogen-fueled trucks replace them, might help to avoid severe climate and energy transition impacts. However, using more biofuel burns more carbon. Burning the wrong biofuel *along with* fossil fuels can increase emissions—and further entrench combustion fuel infrastructure that otherwise would be replaced with cleaner alternatives.

i.1.1 Some different types of biofuel technologies

Corn ethanol

Starch milled from corn is fermented to produce an alcohol that is blended into gasoline. Ethanol is about 10% of the reformulated gasoline sold and burned in California.

Fischer-Tropsch synthesis

This technology condenses a gasified mixture of carbon monoxide and hydrogen to form hydrocarbons and water, and can produce synthetic biogas, gasoline, jet fuel, or diesel biofuels. A wide range of materials can be gasified for this technology. Fischer-Tropsch synthesis can make any or all of these biofuels from cellulosic biomass such as cornstalk or sawmill residues.

Biofuel in the Climate System 101

People and other animals exhale carbon dioxide into the air while plants take carbon dioxide out of the air. Biofuel piggybacks on—and alters—this natural carbon cycle. It is fuel made to be burned but made from plants or animals that ate plants. Biofuels promise to let us keep burning fuels for energy by putting the carbon that emits back into the plants we will make into the fuels we will burn next year. All we have to do is grow a lot of extra plants, and keep growing them.

But can the biofuel industry keep that promise?

This much is clear: burning biofuels emits carbon and other harmful pollutants from the refinery stack and the tailpipe. Less clear is how many extra plants we can grow; how much land for food, natural ecosystems and the carbon sinks they provide it could take; and ultimately, how much fuel combustion emissions the Earth can take back out of the air.

Some types of biofuels emit more carbon than the petroleum fuels they replace, raise food prices, displace indigenous peoples, and worsen deforestation. Other types of biofuels might help, along with more efficient and cleaner renewable energy and energy conservation, to solve our climate crisis.

How much of which types of biofuels we choose matters.

"Biodiesel"

Oxygen-laden hydrocarbons made from lipids that can only be burned along with petroleum diesel is called "biodiesel" to denote that limitation, which does not apply to all diesel biofuels.

Hydrotreating esters and fatty acids (HEFA)

HEFA technology produces hydrocarbon fuels from lipids. This is the technology crude refiners propose to use for biofuels. The diesel hydrocarbons it produces are different from "biodiesel" and are made differently, as summarized directly below.

i.2 What is HEFA technology?

i.2.1 How HEFA works

HEFA removes oxygen from lipidic (oily) biomass and reformulates the hydrocarbons this produces so that they will burn like certain petroleum fuels. Some of the steps in HEFA refining are similar to those in traditional petroleum refining, but the "deoxygenation" step is very different, and that is because lipids biomass is different from crude and its derivatives.

i.2.2 HEFA feedstocks

Feedstocks are detailed in Chapter 2. Generally, all types of biomass feedstocks that HEFA technology can use contain lipids, which contain oxygen, and nearly all of them used for HEFA biofuel today come directly or indirectly from one (or two) types of farming.

Purpose-grown crops

Vegetable oils from oil crops, such as soybeans, canola, corn, oil palm, and others, are used directly and indirectly as HEFA feedstock. Direct use of crop oils, especially soy, is the major

portion of total HEFA feeds. Indirect uses are explained below. Importantly, these crops were cultivated for food and other purposes which HEFA biofuels now compete with—and a new oil crop that has no existing use can still compete for farmland to grow it. Some other biofuels, such as those which can use cellulosic residues as feedstock for example, do not raise the same issue. Thus, in biofuels jargon, the term "purpose-grown crops" denotes this difference among biofuels.

Animal fats

Rendered livestock fats such as beef tallow, pork lard, and chicken fat are the second largest portion of the lipids in HEFA feedstock, although that might change in the future if refiners tap fish oils in much larger amounts. These existing lipid sources also have existing uses for food and other needs, many of which are interchangeable among the vegetable and animal lipids. Also, particularly in the U.S. and similar agricultural economies, the use of soy, corn and other crops as livestock feeds make purpose-grown crops the original source of these HEFA feeds.

Used cooking oils

Used cooking oil (UCO), also called yellow grease or "waste" oil, is a variable mixture of used plant oils and animal fats, typically collected from restaurants and industrial kitchens. It notably could include palm oil imported and cooked by those industries. HEFA feeds include UCO, though its supply is much smaller than those of crop oils or livestock fats. UCO, however, originates from the same purpose grown oil crops and livestock, and UCO has other uses, many of which are interchangeable with the other lipids, so it is not truly a "waste" oil.

i.2.3 HEFA processing chemistry

The HEFA process reacts lipids biomass feedstock with hydrogen over a catalyst at high temperatures and pressures to form hydrocarbons and water. The intended reactions of this "hydro-conversion" accomplish the deoxygenation and reformulation steps noted above.

The role of hydrogen in HEFA production

Hydrogen is consumed in several HEFA process reactions, especially deoxygenation, which removes oxygen from the HEFA process hydrocarbons by bonding with hydrogen to form water. Hydrogen also is essential for HEFA process reaction control. As a result, HEFA processing requires vast amounts of hydrogen, which HEFA refineries must produce in vast amounts. HEFA hydro-conversion and hydrogen reaction chemistry are detailed in Chapter 1.

i.2.4 What HEFA produces

"Drop in" diesel

One major end product of HEFA processing is a "drop-in" diesel that can be directly substituted for petroleum diesel as some, or all, of the diesel blend fueled and burned. Drop-in diesel is distinct from biodiesel, which must be blended with petroleum diesel to function in combustion engines and generally needs to be stored and transported separately. Drop-in diesel

is also referred to as "renewable" diesel, however, those labels also apply to diesel made by other biofuel technologies, so diesel produced by the HEFA process is called "HEFA diesel" herein.

"Sustainable Aviation Fuel"

The other major end product of HEFA processing is a partial substitute for petroleum-based jet fuel, sometimes referred to as "Sustainable Aviation Fuel" or "SAF," which also is produced by other biofuel technologies. HEFA jet fuel is allowed by aviation standards to be up to a maximum of 50% of the jet fuel burned, so it must be blended with petroleum jet fuel.

i.3 Conversions of Crude oil refineries to HEFA

i.3.1 Current and proposed conversions of oil refineries

Phillips 66 Co. (P66) proposes to convert its petroleum refinery in Rodeo, CA into a 80,000 barrel per day (b/d) biorefinery.² In nearby Martinez, Marathon Petroleum Corporation (MPC) proposes a 48,000 b/d biorefinery³ at the site where it closed a crude refinery in April 2020.⁴ Other crude-to-biofuel refinery conversions are proposed or being built in Paramount, CA (21,500 b/d new capacity),⁵ Bakersfield, CA (15,000 b/d),⁶ Port Arthur, TX (30,700 b/d),⁷ Norco, LA (17,900 b/d new capacity),⁸ and elsewhere. All of these projects are super-sized compared with the 2,000–6,000 b/d projects studied as of just a few years ago.⁹ The P66 Rodeo and MPC Martinez projects are the largest of their kind to be proposed or built to date. P66 boasts that its Rodeo biorefinery would be the largest in the world.¹⁰

i.3.2 <u>Repurposing of existing equipment</u>

Remarkably, all of the crude-to-biofuel conversion projects listed above seek to use HEFA technology—none of the refiners chose Fischer-Tropsch synthesis despite its greater flexibility than HEFA technology and ability to avoid purpose-grown biomass feedstock. However, this is consistent with repurposing the plants already built. The California refiners propose to repurpose existing hydro-conversion reactors—hydrocrackers or hydrotreaters—for HEFA processing, and existing hydrogen plants to supply HEFA process hydrogen needs.^{2–6} Moreover, it is consistent with protecting otherwise stranded assets; repurposed P66 and MPC assets have recently been shut down, are being shut down, or will potentially be unusable soon, as described in Chapter 1.

While understandable, this reaction to present and impending petroleum asset stranding appears to be driving our energy system toward HEFA technology instead of potentially cleaner alternatives at an enormous scale, totaling 164,500 b/d by 2024 as proposed now in California. This assets protection reaction also presents a clear potential for further HEFA expansion. Refiners could continue to repurpose petroleum refining assets which will be idled as by the replacement of gasoline with more efficient electric passenger vehicles.

Before allowing this new source of carbon to become locked into a future combustion-based transportation system, assessment of potential impacts across the HEFA fuel chain is warranted.

i.4 Key questions and concerns about crude-to-biofuel conversions

i.4.1 Potential impacts of biomass feedstock acquisition

Proposed and potential HEFA expansions in California would rapidly and substantially increase total demand for globally traded agricultural lipids production. This could worsen food insecurity, risk deforestation, biodiversity and natural carbon sink impacts from expansions of farm and pasture lands, and drive populations elsewhere to prioritize use of their remaining lipids shares for food. Biofuel, biodiversity, and climate analysts often refer to the food security impact and agriculture expansion risks in terms of food price and "indirect land use" impacts. The latter effect, on *where* a globally limited biofuel resource could be used, is often referred to by climate policy analysts as an emission-shifting or "leakage" impact. Chapter 2 reviews these potential feedstock acquisition impacts and risks.

i.4.2 Potential impacts of HEFA refinery processing

Processing a different oil feedstock is known to affect refinery hazards and emissions, and converted HEFA refineries would process a very different type of oil feedstock. The carbon intensity—emissions per barrel processed—of refining could increase because processing high-oxygen plant oils and animal fats would consume more hydrogen, and the steam reformers that refiners plan to repurpose emit some ten tons of CO₂ per ton of hydrogen produced. Explosion and fire risks could increase because byproducts of refining the new feeds pose new equipment damage hazards, and the extra hydrogen reacted with HEFA feeds would increase the frequency and magnitude of dangerous runaway reactions in high-pressure HEFA reactors. Episodic air pollution incidents could recur more frequently because refiners would partially mitigate the impacts of those hazards by rapid depressurization of HEFA reactor contents to refinery flares, resulting in acute air pollutant exposures locally. Chapter 3 assesses these potential impacts.

i.4.3 Potential impacts on climate protection pathways

A climate pathway is a road map for an array of decarbonization technologies and measures to be deployed over time. California has developed a range of potential pathways to achieve its climate goals—all of which rely on replacing most uses of petroleum with zero-emission batteryelectric vehicles and fuel cell-electric vehicles (FCEVs) energized by renewable electricity. Proposed and potential HEFA biofuels growth could exceed this range of state pathways or interfere with them in several ways that raise serious questions for our future climate.

HEFA biofuels could further expand as refiners repurpose assets idled by the replacement of gasoline with electric vehicles. This could exceed HEFA caps *and* total liquid fuels volumes in the state climate pathways. Hydrogen committed to HEFA growth would not be available for FCEVs and grid-balancing energy storage, potentially slowing zero-emission fuels growth. High-carbon hydrogen repurposed for HEFA refining, which could not pivot to zero-emission FCEV fueling or energy storage, could lock in HEFA biofuels instead of supporting transitions to cleaner fuels. These critical-path climate factors are assessed in Chapter 4.

i.4.4 Alternatives, opportunities and choices

Zero emission hydrogen alternative

Renewable-powered electrolysis of water produces zero-emission hydrogen that could replace existing high-carbon hydrogen production during refinery maintenance shutdowns and HEFA conversions. Indeed, a "Hydrogen Roadmap" in state climate pathways envisions converting all refineries to renewable hydrogen. This measure could cut emissions, support the growth of FCEVs and grid-balancing energy needed to further expand renewable electricity and zero-emission fuels, and reduce local transition impacts when refineries decommission.

Window of opportunity

A crucial window of opportunity to break out of carbon lock-in has opened with the beginning of California petroleum asset stranding in 2020 and could close if refiner plans to repurpose those assets re-entrench liquid combustion fuels. The opening of this time-sensitive window underscores the urgency of early deployment for FCEV, energy storage, and zero-emission fuels which renewable-powered electrolysis could support.

Potential synergies with HEFA biofuels cap

Coupling this measure with a HEFA biofuels cap has the potential to enhance its benefits for FCEV and cleaner fuels deployment by limiting the potential for electrolysis hydrogen to instead be committed to HEFA refining during the crucial early deployment period, and has the potential to reduce HEFA refining hazard, episodic air pollution and environmental justice impacts.

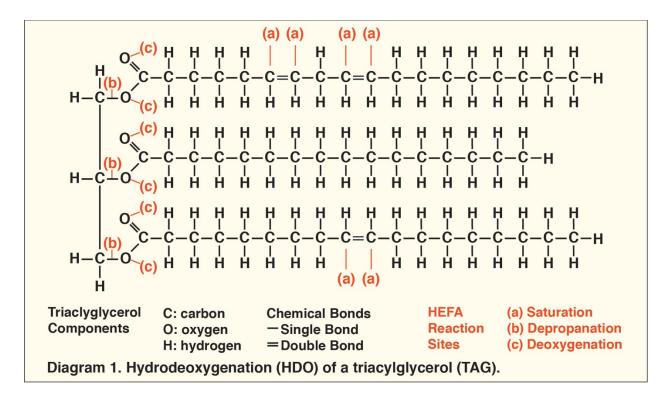
i.4.5 <u>A refinery project disclosure question</u>

Readers should note that P66² and MPC¹¹ excluded flares and hydrogen production which would be included in their proposed HEFA projects from emission reviews they assert in support of their air permit applications. To date neither refiner has disclosed whether or not its publicly asserted project emission estimate excludes any flare or hydrogen production plant emissions. However, as shown in Chapter 3, excluding flare emissions, hydrogen production emissions, or both could underestimate project emission impacts significantly.

i.5 The scope and focus of this report

This report addresses the questions and concerns introduced above. Its scope is limited to potential fuel chain and energy system impacts of HEFA technology crude-to-biofuel conversion projects. It focuses on the California setting and, within this setting, the Phillips 66 Co. (P66) Rodeo and Marathon Petroleum Corp. (MPC) Martinez projects. Details of the data and methods supporting original estimates herein are given in a Supporting Material Appendix.¹

1. OVERVIEW OF HEFA BIOFUEL TECHNOLOGY


All of the full-scale conversions from petroleum refining to biofuel refining proposed or being built in California now seek to use the same type of technology for converting biomass feedstock into fuels: hydrotreating esters and fatty acids (HEFA).²³⁴⁶ "Hydrotreating" signifies a hydro-conversion process: the HEFA process reacts biomass with hydrogen over a catalyst at high temperatures and pressures to form hydrocarbons and water. "Esters and fatty acids" are the type of biomass this hydro-conversion can process: triacylglycerols (TAGs) and the fatty acids derived from TAGs. HEFA feedstock is biomass from the TAGs and fatty acids in plant oils, animal fats, fish oils, used cooking oils, or combinations of these biomass lipids.

This chapter addresses how HEFA biofuel technology functions, which is helpful to assessing its potential impacts in the succeeding chapters, and explores why former and current crude oil refiners choose this technology instead of another available fuels production option.

1.1 HEFA process chemistry

Hydrocarbons formed in this process reflect the length of carbon chains in its feed. Carbon chain lengths of the fatty acids in the TAGs vary by feed source, but in oil crop and livestock fat feeds are predominantly in the range of 14–18 carbons (C14–C18) with the vast majority in the C16–C18 range.¹ Diesel is predominantly a C15–C18 fuel; Jet fuel C8–C16. The fuels HEFA can produce in relevant quantity are thus diesel and jet fuels, with more diesel produced unless more intensive hydrocracking is chosen intentionally to target jet fuel production.

HEFA process reaction chemistry is complex, and in practice involves hard-to-control process conditions and unwanted side-reactions, but its intended reactions proceed roughly in sequence to convert TAGs into distillate and jet fuel hydrocarbons.^{12 13 14 15 16 17 18 19 20 21 22} Molecular sites of these reactions in the first step of HEFA processing, hydrodeoxygenation (HDO), are illustrated in Diagram 1 below.

Fatty acids are "saturated" by bonding hydrogen to their carbon atoms. <u>See</u> (a) in Diagram. This tends to start first. Then, the fatty acids are broken free from the three-carbon "propane knuckle" of the TAG (Diagram 1, left) by breaking its bonds to them via hydrogen insertion. (Depropanation; <u>see</u> (b) in Diagram 1.) Still more hydrogen bonds with the oxygen atoms (c), to form water (H₂O), which is removed from the hydrocarbon process stream. These reactions yield water, propane, some unwanted but unavoidable byproducts (not shown in the diagram for simplicity), and the desired HDO reaction products—hydrocarbons which can be made into diesel and jet fuel.

But those hydrocarbons are not yet diesel or jet fuel. Their long, straight chains of saturated carbon make them too waxy. Fueling trucks or jets with wax is risky, and prohibited by fuel specifications. To de-wax them, those straight-chain hydrocarbons are turned into their branched-chain isomers.

Imagine that the second-to-last carbon on the right of the top carbon chain in Diagram 1 takes both hydrogens bonded to it, and moves to in between the carbon immediately to its left and one of the hydrogens that carbon already is bonded to. Now imagine the carbon at the end of the chain moves over to where the second-to-last carbon used to be, and thus stays attached to the carbon chain. That makes the straight chain into its branched isomer. It is isomerization.

Isomerization of long-chain hydrocarbons in the jet–diesel range is the last major HEFA process reaction step. Again, the reaction chemistry is complex, involves hard-to-control process conditions and unwanted side reactions at elevated temperatures and pressures, and uses a lot of

hydrogen. But these isomerization reactions, process conditions, and catalysts are markedly different from those of HDO.^{9 14–17 19 20} And these reactions, process conditions, catalysts and hydrogen requirements also depend upon whether isomerization is coupled with intentional hydrocracking to target jet instead of diesel fuel production.¹ Thus this last major set of HEFA process reactions has, so far, required a separate second step in HEFA refinery configurations. For example, MPC proposes to isomerize the hydrocrabons from its HDO reactors in a separate second-stage hydrocracking unit to be repurposed from its shuttered Martinez crude refinery.³

HEFA isomerization requires very substantial hydrogen inputs, and can recycle most of that hydrogen when targeting diesel production, but consumes much more hydrogen for intentional hydrocracking to boost jet fuel production, adding significantly to the already-huge hydrogen requirements for its HDO reaction step.¹

The role and impact of heat and pressure in the HEFA process

Hydro-conversion reactions proceed at high temperatures and extremely high pressures. Reactors feeding gas oils and distillates of similar densities to HEFA reactor feeds run at 575– 700 °F and 600–2,000 pounds per square inch (psi) for hydrotreating and at 575–780 °F and 600– 2,800 psi for hydrocracking.¹⁶ That is during normal operation. The reactions are exothermic: they generate heat in the reactor on top of the heat its furnaces send into it. Extraordinary steps to handle the severe process conditions become routine in hydro-conversion. Hydrogen injection and recycle capacities are oversized to quench and attempt to control reactor heat-and-pressure rise.^{16 22} When that fails, which happens frequently as shown in a following chapter, the reactors depressurize, dumping their contents to emergency flares. That is during petroleum refining.

Hydro-conversion reaction temperatures increase in proportion to hydrogen consumption,²¹ and HDO reactions can consume more hydrogen, so parts of HEFA hydro-conversion trains can run hotter than those of petroleum refineries, form more extreme "hot spots," or both. Indeed, HEFA reactors must be designed to depressurize rapidly.²² Yet as of this writing, no details of design potential HEFA project temperature and pressure ranges have been reported publicly.

1.2 Available option of repurposing hydrogen equipment drives choice of HEFA

Refiners could choose better new biofuel technology

Other proven technologies promise more flexibility at lower feedstock costs. For example, Fischer-Tropsch synthesis condenses a gasified mixture of carbon monoxide and hydrogen to form hydrocarbons and water, and can produce biogas, gasoline, jet fuel, or diesel biofuels.²³ Cellulosic biomass residues can be gasified for Fischer-Tropsch synthesis.²⁴ This alternative promises lower cost feedstock than HEFA technology and the flexibility of a wider range of future biofuel sales, along with the same ability to tap "renewable" fuel subsidies as HEFA technology. Refiners choose HEFA technology for a different reason.

Refiners can repurpose existing crude refining equipment for HEFA processing

Hydro-conversion reactors and hydrogen plants which were originally designed, built, and used for petroleum hydrocracking and hydrotreating could be repurposed and used for the new and different HEFA feedstocks and process reactions. This is in fact what the crude-to-biofuel refinery conversion projects propose to do in California.^{2 3 5 6}

In the largest HEFA project to be proposed or built, P66 proposes to repurpose its 69,000 barrel/day hydrocracking capacity at units 240 and 246 combined, its 16,740 b/d Unit 248 hydrotreater, and its 35,000 b/d Unit 250 hydrotreater for 100% HEFA processing at Rodeo.^{2 25} In the second largest project, MPC proposes to repurpose its 40,000 b/d No.2 HDS hydrotreater, 70,000 b/d No. 3 HDS hydrotreater, 37,000 b/d 1st Stage hydrocracker, and its 37,000 b/d 2nd Stage hydrocracker for 100% HEFA processing at Martinez.^{3 26}

For hydrogen production to feed the hydro-conversion processing P66 proposes to repurpose 28.5 million standard cubic feet (SCF) per day of existing hydrogen capacity from its Unit 110 and 120 million SCF/d of hydrogen capacity from the Air Liquide Unit 210 at the same P66 Rodeo refinery.^{2 25 27} MPC proposes to repurpose its 89 million SCF/d No. 1 Hydrogen Plant along with the 35 million SCF/d Air Products Hydrogen Plant No. 2 at the now-shuttered MPC Martinez refinery.^{3 4 11 26}

By converting crude refineries to HEFA biofuel refiners protect otherwise stranded assets

Motivations to protect otherwise stranded refining assets are especially urgent in the two largest crude-to-biofuel refining conversions proposed to date. Uniquely designed and permitted to rely on a landlocked and fast-dwindling crude source already below its capacity, the P66 San Francisco Refinery has begun to shutter its front end in San Luis Obispo County, which makes its unheated pipeline unable to dilute and send viscous San Joaquin Valley crude to Rodeo.²⁸ This threatens the viability of its Rodeo refining assets—as the company itself has warned.²⁹ The MPC Martinez refinery was shut down permanently in a refining assets consolidation, possibly accelerated by COVID-19, though the pandemic closed no other California refinery.³⁰

The logistics of investment in new and repurposed HEFA refineries as a refining asset protection mechanism leads refiners to repurpose a refining technology that demands hydrogen, then repurpose refinery hydrogen plants that supply hydrogen, then involve other companies in a related sector—such as Air Liquide and Air products—that own otherwise stranded hydrogen assets the refiners propose to repurpose as well.

Refiners also seek substantial public investments in their switch to HEFA biofuels. Tepperman (2020)³¹ reports that these subsidies include federal "Blenders Tax" credits, federal "Renewable Identification Number" credits, and state "Low Carbon Fuel Standard" credits that one investment advisor estimated can total \$3.32 per gallon of HEFA diesel sold in California. Krauss (2020)³² put that total even higher at \$4.00 per gallon. Still more public money could be directed to HEFA jet fuel, depending on the fate of currently proposed federal legislation.³³

2. UPSTREAM — IMPACT OF FEEDSTOCK CHOICES

The types, amounts, and characteristics of energy feedstocks have repercussions across the energy system and environment. Choosing HEFA technology would lock into place a particular subset of the biomass carbon on our planet for use in energy production. It would further create a need for continued and potentially additional hydrogen use. This chapter evaluates the environmental impacts of feedstock acquisition and feedstock choices in HEFA production.

2.1 Proposed feedstock use by the Phillips 66, Marathon, and other California projects

2.1.1 Biomass volume

The proposed conversions at P66 and MPC, and attendant use of HEFA feedstocks, are very large in scale. P66 boasts that its Rodeo biorefinery would be the largest in the world.¹⁰ The feedstock capacity of its HEFA biorefinery proposed in Rodeo, CA reported by P66 is 80,000 barrels per day (b/d).² With a feedstock capacity of 48,000 b/d, the MPC Martinez, CA project could then be the second largest HEFA refinery to be proposed or built worldwide.³ The World Energy subsidiary, AltAir, expansion in Paramount, CA, which also plans to fully convert a petroleum refinery, would add 21,500 b/d of new HEFA feedstock capacity.⁵ And Global Clean Energy Holdings, Inc. plans to convert its petroleum refinery in Bakersfield, CA into a HEFA refinery⁶ with at least 15,000 b/d of new capacity. Altogether that totals 164,500 b/d of new HEFA feedstock capacity statewide.

The aggregate proposed new California feedstock demand is some 61–132 *times* the annual feedstock demand for HEFA refining in California from 2016–2019.³⁴ But at the same time, the proposed new California biofuel feed demand is only ten percent of California refinery demand for crude oil in 2019,³⁵ the year before COVID-19 forced temporary refining rate cuts.³⁶ This raises a potential for the new HEFA feed demand from crude-to-biofuel refinery conversions proposed here today to be only the beginning of an exponentially increasing trend.

2.1.2 Biomass type

HEFA technology, proposed at all of the California refineries currently proposing conversion to biofuel production, uses as feedstock triacylglycerols (TAGs) and fatty acids derived from TAGs (Chapter 1). Primary sources of these biomass lipids in concentrations and amounts necessary for HEFA processing are limited to oil crop plants, livestock fats, and fish oils. Existing U.S. biofuels production has tapped soybean oil, distillers corn oil, canola oil, cottonseed oil, beef tallow, pork lard and grease, poultry fats, fish oils from an unreported and likely wide range of species, and used cooking oil—lipids that could be recovered from uses of these primary sources, also known as "yellow grease."^{37 38 39}

2.1.3 Other uses for this type of biomass

Importantly, people already use these oils and fats for many other needs, and they are traded globally. Beside our primary use of this type of biomass to feed ourselves directly, we use it to feed livestock in our food system, to feed our pets, and to make soap, wax, lubricants, plastics, cosmetic products, and pharmaceutical products.⁴⁰

2.2 Indirect impacts of feedstock choices

2.2.1 Land use and food system impacts

Growing HEFA biofuel feedstock demand is likely to increase food system prices. Market data show that investors in soybean and tallow futures have bet on this assumption.^{41 42 43} This pattern of radically increasing feedstock consumption and the inevitable attendant commodity price increases threatens significant environmental and human consequences, some of which are already emerging even with more modestly increased feedstock consumption at present.

As early as 2008, Searchinger et al.⁴⁴ showed that instead of cutting carbon emissions, increased use of biofuel feedstocks and the attendant crop price increases could expand crop land into grasslands and forests, reverse those natural carbon sinks, and cause food-sourced biofuels to emit more carbon than the petroleum fuels they replace. The mechanism for this would be global land use change linked to prices of commodities tapped for both food and fuel.⁴⁴

Refiners say they will not use palm oil, however, that alone does not solve the problem. Sanders et al. (2012)⁴⁵ showed that multi-nation demand and price dynamics had linked soy oil, palm oil, food, and biofuel feedstock together as factors in the deforestation of Southeast Asia for palm oil. Santeramo (2017)⁴⁶ showed that such demand-driven changes in prices act across the oil crop and animal fat feedstocks for HEFA biofuels in Europe and the U.S. Searle (2017)⁴⁷ showed rapeseed (canola) and soy biofuels demand was driving palm oil expansion; palm oil imports increase for other uses of those oils displaced by biofuels demand.

Additionally, The Union of Concerned Scientists (2015),⁴⁸ Lenfert et al. (2017),⁴⁹ and Nepstad and Shimada (2018)⁵⁰ linked soybean oil prices to deforestation for soybean plantations in the Brazilian Amazon and Pantanal. By 2017, some soy and palm oil biofuels were found to

emit more carbon than the petroleum fuels they are meant to replace.^{47 51} By 2019 the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) warned large industrial biofuel feedstock plantations threaten global biodiversity.⁵² By 2021 the Intergovernmental Panel on Climate Change joined the IPBES in this warning.⁵³ At high yields and prices, up to 79 million acres could shift to energy crops by 2030 in the U.S. alone.⁴⁰ And once a biofuel feedstock also used for food is locked in place, the human impacts of limiting land conversion could potentially involve stark social injustices, notably food insecurity and hunger.⁴⁴

Work by many others who are not cited here contributed to better understanding the problem of our growing fuel chain-food chain interaction. Potential biodiversity loss, such as pollinator population declines, further risks our ability to grow food efficiently. Climate heating threatens more frequent crop losses. The exact tipping point, when pushing these limits too hard might turn the natural carbon sinks that biofuels depend upon for climate benefit into global carbon sources, remains unknown.

2.1.2 Impact on climate solutions

Technological, economic, and environmental constraints across the arrays of proven technologies and measures to be deployed for climate stabilization limit biofuels to a targeted role in sectors for which zero-emission fuels are not yet available.^{53 54 55 56 57 58 59 60 61} And these technologies and measures require place-based deployment actions understood in a larger global context—actions that must be planned, implemented, and enforced by the political jurisdictions in each geography, but whose effect must be measured on a worldwide scale. California policy makers acted on this fact by expressly defining an in-state emission reduction which results in an emission increase elsewhere as inconsistent with climate protection.⁶²

Tapping a biomass resource for biofuel feedstock can only be part of our state or national climate solution if it does not lead to countervailing climate costs elsewhere that wipe out or overtake any purported benefits. Thus, if California takes biomass from another state or nation which that other state or nation needs to cut emissions there, it will violate its own climate policy, and more crucially, burning that biofuel will not cut carbon emissions. Moreover, our climate policy should not come at the cost of severe human and environmental harms that defeat the protective purpose of climate policy.

Use of biofuels as part of climate policy is thus limited by countervailing climate and other impacts. Experts that the state has commissioned for analysis of the technology and economics of paths to climate stabilization suggest that state biofuel use should be limited to the per capita share of sustainable U.S. production of biofuel feedstock.^{54 55} Per capita share is a valid benchmark, and is used herein, but it is not necessarily a basis for just, equitable, or effective policy. Per capita, California has riches, agriculture capacity, solar energy potential, and mild winters that populations in poorer, more arid, or more polar and colder places may lack. Accordingly, the per capita benchmark applied in Table 1 below should be interpreted as a conservative (high) estimate of sustainable feedstock for California HEFA refineries.

MM the million metric tons/vear

Table 1. U.S. and California lipid supplies v. potential new lipid feedstock demand from crude-to-biofuel refinery conversions now planned in California.

WIW Vy: million me	etric tons/year				
Lipids	U.S.		CA per capita d	CA produced ^e	
supply	(MM t/y)	(%)	(MM t/y)	(MM t/y)	
Biofuels ^a	4.00	100 %	0.48	0.30	
All uses	20.64	100 %	2.48	1.55	
Soybean oil ^b	10.69	52 %			
Livestock fats a	4.95	24 %			
Corn oil ^b	2.61	13 %			
Waste oil ^a	1.40	7 %			
Canola oil ^b	0.76	4 %			
Cottonseed b	0.23	1 %			
Lipids Demand for four					
proposed CA refineries		Percentage of U.S. and California supplies for all uses			
(MM t/y) °		U.S. total	CA per capita	CA produced	
8.91		43 %	359 %	575 %	

a. US-produced supply of feedstocks for hydro-processing esters and fatty acids (HEFA) in 2030, estimated in the U.S. Department of Energy *Billion-Ton Update* (2011).⁴⁰ Includes total roadside/farm gate yields estimates in the contiguous U.S. for biofuel feedstock consumption, and for all uses of animal fats and waste oil (used cooking oil).
 b. U.S. farm yield for all uses of lipids used in part for biofuels during Oct 2016–Sep 2020 from U.S. Department of Agriculture *Oil Crops Data: Yearbook Tables;* tables 5, 20, 26 and 33.³⁸ <u>See</u> also Karras (2021a).⁶³

c. From proposed Rodeo,² Martinez,³ Paramount⁵ and Bakersfield⁶ capacity at a feed specific gravity of 0.914.

d. California per capita share of U.S. totals based on 12 percent of the U.S. population.

e. Calif. produced lipids, after Billion-Ton Update by Mahone et al.,55 with lipids for all uses scaled proportionately.

2.3 Effect of supply limitations on feedstock acquisition impacts

Feeding the proposed new California HEFA refining capacity could take more than 350% of its per capita share from total U.S. farm yield for *all uses* of oil crop and livestock fat lipids that have been tapped for biofuels in much smaller amounts until now. <u>See</u> Table 1. The 80,000 b/d (~4.24 MM t/y) P66 Rodeo project² alone could exceed this share by ~71%. At 128,000 b/d (~6.79 MM t/y) combined, the P66² and Marathon³ projects together could exceed it by ~174%.

2.3.1 Supply effect on climate solutions

Emission shifting would be the first and most likely impact from this excess taking of a limited resource. The excess used here could not be used elsewhere, and use of the remaining farmed lipids elsewhere almost certainly would prioritize food. Reduced capacity to develop and use this biofuel for replacing petroleum diesel outside the state would shift future emissions.

2.3.2 <u>Supply effect on land use and food systems</u>

Displacement of lipid food resources at this scale would also risk cascading impacts. These food price, food security, and land conversion impacts fuel deforestation and natural carbon sink destruction in the Global South, and appear to have made some HEFA biofuels more carbon-

intensive than petroleum due to indirect land use impacts that diminish the carbon storage capacity of lands converted to biofuel plantations, as described above.^{41–53}

The severity of these risks to food security, biodiversity, and climate sinks appears uncertain for some of the same reasons that make it dangerous. Both the human factors that drove land use impacts observed in the past^{41–53} and the ecological resilience that constrained their severity in the past may not always scale in a linear or predictable fashion, and there is no precedent for the volume of lipid resource displacement for energy now contemplated.

In contrast, the causal trigger for any or all of these potential impacts would be a known, measurable volume of potential lipid biomass feedstock demand. Importantly, this volumedriven effect does not implicate the Low Carbon Fuel Standard and can only be addressed effectively by separate policy or investment actions.

2.3.3 Supply effect on HEFA feedstock choices

Both Marathon and P66 have indicated informally that their preferred feedstocks are used cooking oil "waste" and domestic livestock fats rather than soy and other food crop oils. It is clear, however, that supplies of these feedstocks are entirely insufficient to meet anticipated demand if the two conversions (and the others planned in California) move forward. Table 1 reveals the fallacy of assuming that used "waste" cooking oil or domestic livestock fats could feed the repurposed HEFA refineries, showing that supplies would be inadequate even in an extreme hypothetical scenario wherein biofuel displaces all other uses of these lipids.

As discussed below, these HEFA feedstock availability limitations have fuel chain repercussions for the other critical HEFA process input—hydrogen.

2.4 Impact of biomass feedstock choices on hydrogen inputs

2.4.1 <u>All HEFA feedstocks require substantial hydrogen inputs to convert the</u> triacylglycerols and fatty acids in the lipid feedstock into HEFA biofuels

Hydrogen (H₂) is the most abundant element in diesel and jet fuel hydrocarbons, and all of the lipid feedstocks that HEFA refiners could process need substantial refinery hydrogen inputs. In HEFA refining hydrogen bonds with carbon in lipid feeds to saturate them, to break the fatty acids and propane "knuckle" of those triacylglycerols apart, and—in unavoidable side-reactions or intentionally to make more jet fuel—to break longer carbon chains into shorter carbon chains. (Chapter 1.) Hydrogen added for those purposes stays in the hydrocarbons made into fuels; it is a true HEFA biofuel feedstock.

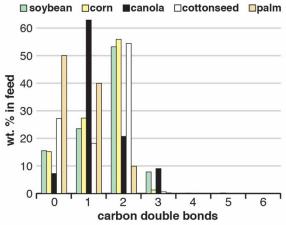
Hydrogen also bonds with oxygen in the lipids to remove that oxygen from the hydrocarbon fuels as water. *Id.* Forming the water (H₂O) takes two hydrogens per oxygen, and the lipids in HEFA feedstocks have consistently high oxygen content, ranging from 10.8–11.5 weight percent,¹ so this deoxygenation consumes vast amounts of hydrogen. Further, hydrogen is injected in large amounts to support isomerization reactions that turn straight-chain hydrocarbons

into branched-chain hydrocarbons. (Chapter 1.) And more hydrogen is injected to quench and control severe processing conditions under which all of these hydro-conversion reactions proceed. *Id.*

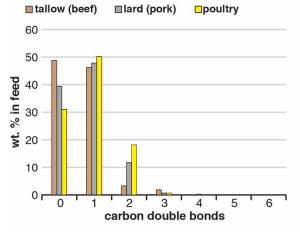
2.4.2 Some HEFA feedstocks need more hydrogen for HEFA processing than others

All types of HEFA feeds consume hydrogen in all the ways described above. However, how much is consumed in the first reaction—saturation—depends on the number of carbon double bonds in the fatty acids of the specific lipid feed source. <u>See</u> Diagram 1, Chapter 1. That matters because fatty acids in one specific HEFA lipids feed can have more carbon double bonds than fatty acids in another. Charts 1-A through 1–F below illustrate these differences in the fatty acid profiles of different HEFA feeds. The heights of the columns in these charts show the percentages of fatty acids in each feed that have various numbers of carbon double bonds.

In soybean oil, which accounts for the majority of U.S. oil crops yield shown in Table 1, most of the fatty acids have 2–3 carbon double bonds (Chart 1-A). In contrast, most of the fatty acids in livestock fats have 0–1 carbon double bonds (Chart 1-B). And in contrast to the plant oil *and* livestock fat profiles, which are essentially empty on the right side of charts 1-A and 1-B, a significant portion of the fatty acids in fish oils have 4–6 carbon double bonds (Chart 1-C).

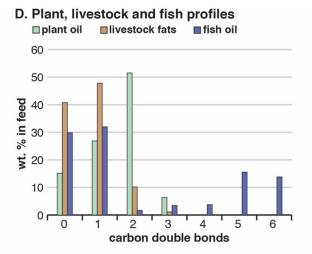

Thus, HEFA processing requires more hydrogen to saturate the carbon double bonds in soy oil than those in livestock fats, and even more hydrogen to saturate those in fish oils. Such single-feed contracts are plausible, but feedstock acquisition logistics for the HEFA biofuels expansion—especially in light of the supply problem shown in Table 1—suggest refiners will process blends, and likely will process yield-weighted blends. Charts 1-D and 1-F show that such blends would dampen but still reflect these differences between specific plant oils, livestock fats, and fish oils. Finally, Chart 1-E illustrates the notoriously variable quality of used cooking oil (UCO), and Chart 1-F illustrates how the impact of UCO variability could be small compared with the differences among other feeds, since UCO could be only a small portion of the blend, as shown in Table 1.

2.4.3 Refining HEFA feedstocks demands more hydrogen than refining crude oil

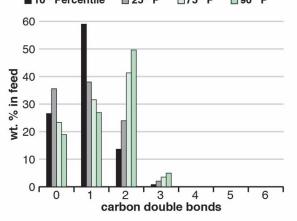

Table 2, on the next page following the charts below, shows total hydrogen demand per barrel of feedstock, for processing different HEFA feeds, and for targeting different HEFA fuels.

Hydrogen demand for saturation of carbon double bonds ranges across the biomass feeds shown in Table 2 from 186–624 standard cubic feet of H₂ per barrel of biomass feed (SCF/b), and is the largest feedstock-driven cause of HEFA H₂ demand variability. For comparison, total on-purpose hydrogen production for U.S. refining of petroleum crude from 2006–2008, before lighter shale oil flooded refineries, averaged 273 SCF/b.¹⁶⁴ This 438 (624-186) SCF/b saturation range alone exceeds 273 SCF/b. The extra H₂ demand for HEFA feeds with more carbon double bonds is one repercussion of the livestock fat and waste oil supply limits revealed in Table 1.

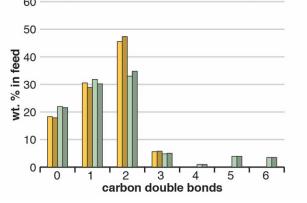
A. Plant oils



B. Livestock fats



C. Fish oils


anchovy herring menhaden salmon tuna 60 50 % in feed 40 30 wt. 20 10 0 2 3 0 1 4 5 6 carbon double bonds

E. UCO variability (percentiles on C18:2) 10th Percentile 25th P 75th P 90th P

F. US yield-wtd. blend profiles, 0–25% fish oil 0% fish oil 0% fish oil 25% fish oil 25% fish oil 10th P UCO 90th P UCO 10th P UCO 90th P UCO 60

1. HEFA feed fatty acid profiles by number of carbon double bonds.

Carbon double bonds require more hydrogen in HEFA processing. **A–C.** Plant oil, animal fat and fish oil profiles. **D.** Comparison of weighted averages for plant oils (US farm yield-wtd. 70/20/7/3 soy/corn/canola/cottonseed blend), livestock fats (40/30/30 tallow/lard/poultry blend) and fish oils (equal shares for species in Chart 1C). **E.** UCO: used cooking oil, a highly variable feed. **F.** US yield-weighted blends are 0/85/10/5 and 25/60/10/5 fish/plant/livestock/UCO oils. Profiles are median values based on wt.% of linoleic acid. <u>See</u> Table A1 for data and sources.¹

	Hydrodeoxygena	ation reactions	Total with isomerization / cracking		
Biomass carbon feed	Saturation ^a	Others ^{b,c}	Diesel target	Jet fuel target d	
Plant oils					
Soybean oil	479	1,790	2,270	3,070	
Plant oils blend ^e	466	1,790	2,260	3,060	
Livestock fats					
Tallow	186	1,720	1,910	2,690	
Livestock fats blend ^e	229	1,720	1,950	2,740	
Fish oils					
Menhaden	602	1,880	2,480	3,290	
Fish oils blend ^e	624	1,840	2,460	3,270	
US yield-weighted blends e					
Blend without fish oil	438	1,780	2,220	3,020	
Blend with 25% fish oil	478	1,790	2,270	3,070	

Table 2. Hydrogen demand for processing different HEFA biomass carbon feeds.

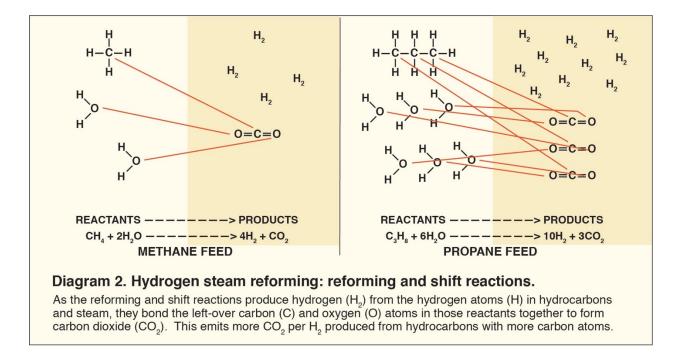
Standard cubic feet of hydrogen per barrel of biomass feed (SCF/b)

a. Carbon double bond saturation as illustrated in Diagram 1 (a). **b, c.** Depropanation and deoxygenation as illustrated in Diagram 1 (b), (c), and losses to unwanted (diesel target) cracking, off-gassing and solubilization in liquids. **d.** Jet fuel total also includes H₂ consumed by intentional cracking along with isomerization. **e.** Blends as shown in charts 1-D and 1-F. Data from Tables A1and Appendix at A2.¹ Figures may not add due to rounding.

Moreover, although saturation reaction hydrogen alone can exceed crude refining hydrogen, total hydrogen consumption in HEFA feedstock processing is larger still, as shown in Table 2.

Other hydrodeoxygenation reactions—depropanation and deoxygenation—account for most of the total hydrogen demand in HEFA processing. The variability in "other" hydrogen demand mainly reflects unavoidable hydrogen losses noted in Table 2, which rise with hydro-conversion intensity. Targeting maximum jet fuel rather than diesel production boosts total HEFA hydrogen demand by approximately 800 SCF/b.¹⁹⁶⁵ This is primarily a product slate rather than feed-driven effect: maximizing jet fuel yield from the HDO reaction hydrocarbons output consumes much more hydrogen for intentional hydrocracking, which is avoided in the isomerization of a HEFA product slate targeting diesel.

Total hydrogen demand to process the likely range of yield-weighted biomass blends at the scale of planned HEFA expansion could thus range from 2,220–3,070 SCF/b, fully 8–11 *times* that of the average U.S. petroleum refinery (273 SCF/b).¹⁶⁴ This has significant implications for climate and community impacts of HEFA refining given the carbon-intensive and hazardous ways that refiners already make and use hydrogen now.


3. MIDSTREAM — HEFA PROCESS ENVIRONMENTAL IMPACTS

This chapter assesses refinery carbon emissions, refinery explosion and fire hazards, and air pollution impacts from refinery flares in HEFA processing. As shown in Chapter 2, turning a petroleum refinery into a HEFA refinery increases its hydrogen input intensity. This increased hydrogen intensity is particularly problematic given that the proposed conversions are all based on plans to re-purpose existing fossil fuel hydrogen production and hydro-conversion processes (Chapter 1). Current refinery hydrogen production that refiners propose to re-purpose uses the extraordinarily carbon intense "steam reforming" technology. Additionally, refinery explosion, fire, and flare emission hazards associated with processing in hydro-conversion units which refiners propose to re-purpose intensify at the increased hydrogen feed rates HEFA processing requires. P66 proposes to repurpose 148.5 million standard cubic feet per day (MMSCFD) of existing steam reforming hydrogen production capacity and 120,740 barrels per day (b/d) of existing hydro-conversion capacity for its proposed HEFA refinery in Rodeo. *Id.* MPC proposes to repurpose 124 MMSCFD of steam reforming capacity and 147,000 b/d of hydro-conversion capacity for its proposed HEFA refinery in Martinez. *Id.*

3.1 Carbon impact of steam reforming in the HEFA process

The hydrogen intensity of HEFA processing makes emissions from supplying the hydrogen all the more important, and as noted, refiners propose to repurpose carbon-intensive steam reforming. This could boost HEFA refinery carbon emissions dramatically.

Steam reforming makes hydrogen by stripping it from hydrocarbons, and the carbon left over from that forms carbon dioxide (CO₂) that emits as a co-product. <u>See</u> Diagram 2. It is often called methane reforming, but refiners feed it other refining byproduct hydrocarbons along with purchased natural gas, and even more CO₂ forms from the other feeds. The difference illustrated in Diagram 2 comes out to 16.7 grams of CO₂ per SCF of H₂ produced from propane *versus* 13.9 grams CO₂/SCF H₂ produced from methane. Fossil fuel combustion adds more CO₂.

Heating the water and feed to make the mixture of superheated steam and hydrocarbons that react at 1,300–1,900 °F, and making the additional steam and power that drive its pumps and pressure, make steam reforming energy intensive. Natural gas and refinery process off gas burn for that energy. Combustion energy intensity, based on design capacities verified and permitted by local air officials, ranges across 11 hydrogen plants that serve or served Bay Area refineries, from 0.142–0.277 million joules (MJ) per SCF H₂ produced, with a median of 0.202 MJ/SCF across the 11 plants.¹ At the median, ~10 gCO₂/SCF H₂ produced emits from burning methane. That, plus the 13.9 g/SCF H₂ from methane feed, could emit 23.9 g/SCF. This median energy intensity (EI) for methane feed is one of the potential plant factors shown in Table 3 below.

Hydrogen plant factors are shown in Table 3 for two feeds—methane, and a 77%/23% methane/propane mix—and for two combustion energy intensities, a Site EI and the median EI from Bay Area data discussed above. The mixed feed reflects propane by-production in HEFA process reactions and the likelihood that this and other byproduct gases would be used as feed, fuel, or both. Site EI should be more representative of actual P66 and MPC plant factors, but details of how they will repurpose those plants have not yet been disclosed. Median EI provides a reference point for P66 and MPC plant factors, and is applied to the other projects in the statewide total at the bottom of the table.

Table 3 shows how high-carbon hydrogen technology and high hydrogen demand for hydroconversion of HEFA feeds (Chapter 2) combine to drive the carbon intensity of HEFA refining. At the likely hydrogen feed mix and biomass feed blend lower bound targeting diesel production, HEFA hydrogen plants could emit 55.3–57.9 kilograms of CO_2 per barrel of biomass feed. And in those conditions at the upper bound, targeting jet fuel, they could emit 76.4–80.1 kg/b.

Table 3. CO ₂ emissions from hydrogen produc	tion proposed for HEFA processing by			
full scale crude-to-biofuel refinery conversions planned in California.				

	Plant factora	Conversion demand (SCF/b)b			Mass emission
P66 Rodeo	(g/SCF)	Lower bound	Upper bound	(kg/b)	(Mt/y)
Mixed feed d					
Site EI a	26.1	2,220	3,070	57.9 – 80.1	1.69 – 2.34
Median El a	24.9	2,220	3,070	55.3 – 76.4	1.61 – 2.23
Methane d			0.070		
Site El ª	25.0	2,220	3,070	55.5 - 76.7	1.62 – 2.24
Median El a	23.9	2,220	3,070	53.1 – 73.4	1.55 – 2.14
MPC Martinez					
Mixed feed ^d					
Site El a	25.8	2,220	3,070	57.3 – 79.2	1.00 – 1.39
Median El a	24.9	2,220	3,070	55.3 – 76.4	0.97 – 1.34
Methane d					
Site El ª	24.7	2,220	3,070	54.8 – 75.8	0.96 – 1.33
Median El a	23.9	2,220	3,070	53.1 – 73.4	0.93 – 1.29
Total CA Plans: P66, MPC, AltAir					
and GCE					
Mixed feed a, d	25.8	2,220	3,070	57.3 – 79.2	3.51 – 4.86
Methane a, d	24.6	2,220	3,070	54.6 - 75.5	3.35 - 4.63

g: gram (CO₂) SCF: standard cubic foot (H₂) b: barrel (biomass feed) Mt: million metric tons

a. Plant factor energy intensity (EI) expressed as emission rate assuming 100% methane combustion fuel. Site EI is from plant-specific, capacity-weighted data; median EI is from 11 SF Bay Area hydrogen plants that serve or served oil refineries. CA total assumes site EIs for P66 and MPC and median EI for AltAir and GCE.
b. H₂ demand/b biomass feed: lower bound for yield-weighted blend with 0% fish oil targeting maximum diesel production; upper bound for yield-weighted blend with 25% fish oil targeting maximum jet fuel production. c. Mass emission at kg/b value in table and capacity of proposed projects, P66: 80,000 b/d; MPC: 48,000 b/d; Altair: 21,500 b/d; GCE: 18,500 b/d. d. Mixed feed is 77% methane and 23% propane, the approximate proportion of propane by-production from HEFA processing, and the likely disposition of propane, other process byproduct gases, or both; methane: 100% methane feed to the reforming and shift reactions. See Appendix for details.¹

Total CO₂ emissions from hydrogen plants feeding the currently proposed HEFA refining expansion proposed statewide could exceed 3.5 million tons per year—if the refiners only target diesel production. <u>See</u> Table 3. If they all target jet fuel, and increase hydrogen production to do so, those emissions could exceed 4.8 million tons annually. *Id*.

It bears note that this upper bound estimate for targeting jet fuel appears to require increases in permitted hydrogen production at P66 and MPC. Targeting jet fuel at full feed capacity may also require new hydrogen capacity a step beyond further expanding the 1998 vintage⁶⁶ P66 Unit 110 or the 1963 vintage⁶⁷ MPC No. 1 Hydrogen Plant. And if so, the newer plants could be less energy intensive. The less aged methane reforming merchant plants in California, for example, have a reported median CO₂ emission rate of 76.2 g/MJ H₂.⁶⁸ That is 23.3 g/SCF, close to, but

less than, the methane reforming median of 23.9 g/SCF in Table 3. Conversely, the belief, based on available evidence until quite recently, that methane emissions from steam reformers do not add significantly to the climate-forcing impact of their huge CO₂ emissions, might turn out to be wrong. Recently reported aerial measurements of California refineries⁶⁹ indicate that methane emissions from refinery hydrogen production have been underestimated dramatically. Thus, the upper bound carbon intensity estimates in Table 3 might end up being too high or too low. But questions raised by this uncertainty do not affect its lower bound estimates, and those reveal extreme-high carbon intensity.

Total CO₂ emissions from U.S. petroleum refineries averaged 41.8 kg per barrel crude feed from 2015–2017, the most recent period in which we found U.S. government-reported data for oil refinery CO₂ emitted nationwide.¹ At 55–80 kg per barrel biomass feed, the proposed HEFA hydrogen production *alone* exceeds that petroleum refining carbon intensity by 32–91 percent.

Additional CO₂ would emit from fuel combustion for energy to heat and pressure up HEFA hydro-conversion reactors, precondition and pump their feeds, and distill, then blend their hydrocarbon products. Unverified potential to emit calculations provided by one refiner¹ suggest that these factors could add ~21 kg/b to the 55–80 kg/b from HEFA steam reforming. This ~76–101 kg/b HEFA processing total would exceed the 41.8 kg/b carbon intensity of the average U.S. petroleum refinery by ~82–142 percent. Repurposing refineries for HEFA biofuels production using steam reforming would thus increase the carbon intensity of hydrocarbon fuels processing.

3.2 Local risks associated with HEFA processing

HEFA processing entails air pollution, health, and safety risks to workers and the surrounding community. One of these risks—the intensified catastrophic failure hazard engendered by the more intensive use of hydrogen for HEFA processing—renders HEFA refining in this respect more dangerous than crude processing.

3.2.1 HEFA processing increases refinery explosion and fire risk

After a catastrophic pipe failure ignited in the Richmond refinery sending 15,000 people to hospital emergency rooms, a feed change was found to be a causal factor in that disaster—and failures by Chevron and public safety officials to take hazards of that feed change seriously were found to be its root causes.⁷⁰ The oil industry knew that introducing a new and different crude into an existing refinery can introduce new hazards.⁷¹ More than this, as it has long known, side effects of feed processing can cause hazardous conditions in the same types of hydro-conversion units it now proposes to repurpose for HEFA biomass feeds,⁷¹ and feedstock changes are among the most frequent causes of dangerous upsets in these hydro-conversion reactors.¹⁶

But differences between the new biomass feedstock refiners now propose and crude oil are bigger than those among crudes which Chevron ignored the hazards of before the August 2012 disaster in Richmond—and involve oxygen in the feed, rather than sulfur as in that disaster.⁷⁰

Chevron Richmond Refinery, 6 Aug 2012. Image: CSB

This categorical difference between oxygen and sulfur, rather than a degree of difference in feed sulfur content, risks further "minimizing the accuracy, or even feasibility, of predictions based on historical data."⁷¹ At 10.8–11.5 wt. %, HEFA feeds have very high oxygen content,¹ while the petroleum crude fed to refinery processing has virtually none. Carbonic acid forms from that oxygen in HEFA processing. Carbonic acid corrosion is a known hazard in HEFA processing.²² But this corrosion mechanism, and the specific locations it attacks in the refinery, differ from those of the sulfidic corrosion involved in the 2012 Richmond incident. Six decades of industry experience with sulfidic corrosion⁷¹ cannot reliably guide—and could misguide—refiners that attempt to find, then fix, damage from this new hazard before it causes equipment failures.

Worse, high-oxygen HEFA feedstock boosts hydrogen consumption in hydro-conversion reactors dramatically, as shown in Chapter 2. That creates more heat in reactors already prone to overheating in petroleum refining. Switching repurposed hydrocrackers and hydrotreaters to HEFA feeds would introduce this second new oxygen-related hazard.

A specific feedback mechanism underlies this hazard. The hydro-conversion reactions are exothermic: they generate heat.^{16 21 22} When they consume more hydrogen, they generate more

heat.²¹ Then they get hotter, and crack more of their feed, consuming even more hydrogen,¹⁶²¹ so "the hotter they get, the faster they get hot."¹⁶ And the reactions proceed at extreme pressures of 600–2,800 pound-force per square inch,¹⁶ so the exponential temperature rise can happen fast.

Refiners call these runaway reactions, temperature runaways, or "runaways" for short. Hydro-conversion runaways are remarkably dangerous. They have melted holes in eight-inchthick, stainless steel walls of hydrocracker reactors¹⁶—and worse. Consuming more hydrogen per barrel in the reactors, and thereby increasing reaction temperatures, HEFA feedstock processing can be expected to increase the frequency and magnitude of runaways.

High temperature hydrogen attack or embrittlement of metals in refining equipment with the addition of so much more hydrogen to HEFA processing is a third known hazard.²² And given the short track record of HEFA processing, the potential for other, yet-to-manifest, hazards cannot be discounted.

On top of all this, interdependence across the process system—such as the critical need for real-time balance between hydro-conversion units that feed hydrogen and hydrogen production units that make it—magnifies these hazards. Upsets in one part of the system can escalate across the refinery. Hydrogen-related hazards that manifest at first as isolated incidents can escalate with catastrophic consequences.

Significant and sometimes catastrophic incidents involving the types of hydrogen processing systems proposed for California HEFA projects are unfortunately common in crude oil refining, as reflected in the following incident briefs posted by *Process Safety Integrity*⁷² report:

- ⁶ Eight workers are injured and a nearby town is evacuated in a 2018 hydrotreater reactor rupture, explosion and fire.
- A worker is seriously injured in a 2017 hydrotreater fire that burns for two days and causes an estimated \$220 million in property damage.
- A reactor hydrogen leak ignites in a 2017 hydrocracker fire that causes extensive damage to the main reactor.
- Å A 2015 hydrogen conduit explosion throws workers against a steel refinery structure.
- ^b Fifteen workers die, and 180 others are injured, in a series of explosions when hydrocarbons flood a distillation tower during a 2005 isomerization unit restart.
- A vapor release from a valve bonnet failure in a high-pressure hydrocracker section ignites in a major 1999 explosion and fire at the Chevron Richmond refinery.
- A worker dies, 46 others are injured, and the community must shelter in place when a release of hydrogen and hydrocarbons under high temperature and pressure ignites in a 1997 hydrocracker explosion and fire at the Tosco (now MPC) Martinez refinery.
- A Los Angeles refinery hydrogen processing unit pipe rupture releases hydrogen and hydrocarbons that ignite in a 1992 explosion and fires that burn for three days.

- A high-pressure hydrogen line fails in a 1989 fire which buckles the seven-inch-thick steel of a hydrocracker reactor that falls on other nearby Richmond refinery equipment.
- An undetected vessel overpressure causes a 1987 hydrocracker explosion and fire.⁷²

These incidents all occurred in the context of crude oil refining. For the reasons described in this section, there is cause for concern that the frequency and severity of these types of hydrogen-related incidents could increase with HEFA processing.

Refiners have the ability to use extra hydrogen to quench, control, and guard against runaway reactions as described in Chapter 1, a measure which has proved partially effective and appears necessary for hydro-conversion processing to remain profitable. As a safety measure, however, it has proved ineffective so often that hydro-conversion reactors are equipped to depressurize rapidly to flares.^{16 22} And that last-ditch safeguard, too, has repeatedly failed to prevent catastrophic incidents. The Richmond and Martinez refineries were equipped to depressurize to flares, for example, during the 1989, 1997, 1999 and 2012 incidents described above. In fact, precisely because it is a last-ditch safeguard, to be used only when all else fails, flaring reveals how frequently these hazards manifest as potentially catastrophic incidents. *See* Table 4 for specific examples.

Indeed, despite current safeguards, hydro-conversion and hydrogen-related process safety hazards which their HEFA conversion projects could worsen contribute to significant flaring incidents at the P66 Rodeo and MPC Martinez refineries frequently. Causal analysis reports for significant flaring show that hydrogen-related hazard incidents occurred at those refineries a combined total of 100 times from January 2010 through December 2020.¹ This is a conservative estimate, since incidents can cause significant impacts without causing environmentally significant flaring, but still represents, on average, and accounting for the Marathon plant closure since April 2020, another hydrogen-related incident at one of those refineries every 39 days.¹

Sudden unplanned or emergency shutdowns of major hydro-conversion or hydrogen production plants occurred in 84 of these 100 reported process safety hazard incidents.¹ Such sudden forced shutdowns of *both* hydro-conversion and hydrogen production plants occurred in 22 of these incidents.¹ In other words, incidents escalated to refinery-level systems involving multiple plants frequently—a foreseeable consequence, given that both hydro-conversion and hydrogen production plants are susceptible to upset when the critical balance of hydrogen production supply and hydrogen demand between them is disrupted suddenly. In four of these incidents, consequences of underlying hazards included fires in the refinery.¹

Since switching to HEFA refining is likely to further increase the frequency and magnitude of these already-frequent significant process hazard incidents, and flaring has proven unable to prevent every incident from escalating to catastrophic proportions, catastrophic consequences of HEFA process hazards are foreseeable.

Table 4. Examples from 100 hydrogen-related process hazard incidents at the Phillips 66 Rodeo and Marathon Martinez refineries, 2010–2020.

Date ^a	Refinery	Hydrodrogen-related causal factors reported by the refiner a
3/11/10	Rodeo	A high-level safety alarm during a change in oil feed shuts down Unit 240 hydrocracker hydrogen recycle compressor 2G-202, forcing the sudden shutdown of the hydrocracker
5/13/10	Martinez	A hydrotreater charge pump bearing failure and fire forces #3 HDS hydrotreater shutdown $^{\rm b}$
9/28/10	Martinez	A hydrocracker charge pump trip leads to a high temperature excursion in hydrocracker reactor catalyst beds that forces sudden unplanned hydrocracker shutdown $^{\rm c}$
2/17/11	Martinez	A hydrogen plant fire caused by process upset after a feed compressor motor short forces the hydrogen plant shutdown; the hydrocracker shuts down on sudden loss of hydrogen
9/10/12	Rodeo	Emergency venting of hydrogen to the air from one hydrogen plant to relieve a hydrogen overpressure as another hydrogen plant starts up ignites in a refinery hydrogen fire
10/4/12	Rodeo	A hydrocracker feed cut due to a hydrogen makeup compressor malfunction exacerbates a reactor bed temperature hot spot, forcing a sudden hydrocracker shutdown ^d
1/11/13	Martinez	Cracked, overheated and "glowing" hydrogen piping forces an emergency hydrogen plant shutdown; the loss of hydrogen forces hydrocracker and hydrotreater shutdowns
4/17/15	Martinez	Cooling pumps trip, tripping the 3HDS hydrogen recycle compressor and forcing a sudden shutdown of the hydrotreater as a safety valve release cloud catches fire in this incident $^{\rm e}$
5/18/15	Rodeo	A hydrocracker hydrogen quench valve failure forces a sudden hydrocracker shutdown ^f
5/19/15	Martinez	A level valve failure, valve leak and fire result in an emergency hydrotreater shutdown
3/12/16	Rodeo	A Unit 240 level controller malfunction trips off hydrogen recycle compressor G-202, which forces an immediate hydrocracker shutdown to control a runaway reaction hazard ⁹
1/22/17	Martinez	An emergency valve malfunction trips its charge pump, forcing a hydrocracker shutdown
5/16/19	Martinez	A recycle compressor shutdown to fix a failed seal valve forces a hydrocracker shutdown $^{\rm h}$
6/18/19	Martinez	A control malfunction rapidly depressurized hydrogen plant pressure swing absorbers
11/11/19	Rodeo	A failed valve spring shuts down hydrogen plant pressure swing absorbers in a hydrogen plant upset; the resultant loss of hydrogen forces a sudden hydrotreater shutdown ⁱ
2/7/20	Martinez	An unprotected oil pump switch trips a recycle compressor, shutting down a hydrotreater
3/5/20	Rodeo	An offsite ground fault causes a power sag that trips hydrogen make-up compressors, forcing the sudden shutdown of the U246 hydrocracker ^j
10/16/20	Rodeo	A pressure swing absorber valve malfunction shuts down a hydrogen plant; the emergency loss of hydrogen condition results in multiple process unit upsets and shutdowns $^{\rm k}$

a. Starting date of the environmentally significant flaring incident, as defined by Bay Area Air Quality Management District Regulation § 12-12-406, which requires causal analysis by refiners that is summarized in this table. An incident often results in flaring for more than one day. The 100 "unplanned" hydro-conversion flaring incidents these examples illustrate are given in Table A6 of this report. Notes b–k below further illustrate some of these examples with quotes from refiner causal reports. b. "Flaring was the result of an 'emergency' ... the #3 HDS charge pump motor caught fire" c. "One of the reactor beds went 50 degrees above normal with this hotter recycle gas, which automatically triggered the 300 lb/minute emergency depressuring system." d. "The reduction in feed rates exacerbated an existing temperature gradient ...higher temperature gradient in D-203 catalyst Bed 4 and Bed 5 ... triggered ... shutdown of Unit 240 Plant 2."
e. "Flaring was the result of an Emergency. 3HDS had to be shutdown in order to control temperatures within the unit as cooling water flow failed." f. "Because hydrocracking is an exothermic process ... [t]o limit temperature rise... [c]old hydrogen quench is injected into the inlet of the intermediate catalyst beds to maintain control of the cracking reactor." g. "Because G-202 provides hydrogen quench gas which prevents runaway reactions in the hydrocracking reactor, shutdown of G-202 causes an automatic depressuring of the Unit 240 Plant 2 reactor" h. "Operations shutdown the Hydrocracker as quickly and safely as possible." i. "[L]oss of hydrogen Make-Up compressors."
k. "Refinery Emergency Operating Procedure (REOP)-21 'Emergency Loss of Hydrogen' was implemented."

3.2.2 HEFA processing would perpetuate localized episodic air pollution

Refinery flares are episodic air polluters. Every time the depressurization-to-flare safeguard dumps process gases in attempts to avoid even worse consequences, that flaring is uncontrolled open-air combustion. Flaring emits a mix of toxic and smog forming air pollutants—particulate matter, hydrocarbons ranging from polycyclic aromatics to methane, sulfur dioxide, hydrogen sulfide, and others—from partially burning off enormous gas flows. Most of the 100 incidents described above flared more than two million cubic feet of vent gas each, and many flared more than ten million.¹

The increased risk of process upsets associated with HEFA processing concomitantly creates increased risk to the community of acute exposures to air pollutants, with impacts varying with the specifics of the incident and atmospheric conditions at the time when flaring recurs.

In 2005, flaring was linked to episodically elevated local air pollution by analyses of a continuous, flare activity-paired, four-year series of hourly measurements in the ambient air near the fence lines of four Bay Area refineries.⁷³ By 2006, the regional air quality management district independently confirmed the link, assessed community-level impacts, and set environmental significance thresholds for refinery flares.^{74 75} These same significance thresholds were used to require P66 and MPC to report the hazard data described above.⁷⁵

Thus, each of the hundred hydrogen-related flaring incidents since 2010 at the P66 Rodeo and MPC Martinez refineries discussed above *individually* exceeded a relevant environmental significance threshold for air quality. Therefore, by prolonging the time over which the frequent incidents continue, and likely increasing the frequency of this significant flaring, repurposing refineries for HEFA processing can be expected to cause significant episodic air pollution.

Environmental justice impacts

It bears significant note that the refinery communities currently living with episodic air pollution—which would potentially be worsened by the conversion to HEFA processing—are predominantly populated by people of color. In fact, refineries were found to account for 93% of the statewide population-weighted disparity between people of color and non-Hispanic whites in particulate matter emission burdens associated with all stationary source industries in the state cap-and-trade program.⁷⁶ These communities of color tend to suffer from a heavy pre-existing pollution burden, such that additional and disproportionate episodic air pollution exposures would have significant environmental justice implications.

4. DOWNSTREAM — IMPACT OF BIOFUEL CONVERSIONS ON CLIMATE PATHWAYS

This chapter assesses potential impacts of HEFA biofuels expansion on California climate plans and goals. Primary issues of concern are HEFA biofuel volume, total liquid combustion fuel volume, systemic effects of refining and hydrogen use which could create HEFA lock-in, and the timing of choices between zero-emission *versus* liquid combustion fuels. Benchmarks for assessing these impact issues are taken from state roadmaps for the array of decarbonization technologies and measures to be deployed over time to achieve state climate goals—herein, "climate pathways." The state has developed a range of climate pathways, which rely in large part on strategies for replacing petroleum with zero-emission fuels that HEFA growth may disrupt and which reflect, in part, tradeoffs between zero-emission and liquid combustion fuels. Section 4.1 provides background on these climate pathway benchmarks and strategies.

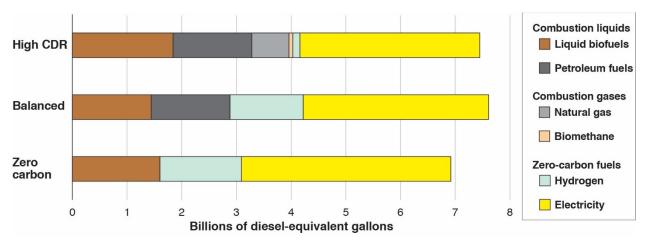
Section 4.2 compares a foreseeable HEFA growth scenario with state climate pathway benchmarks for HEFA biofuel volume, total liquid fuel volume and systemic effects of refining and hydrogen use through mid-century, and estimates potential greenhouse gas emissions. This assessment shows that HEFA biofuel growth has the potential to impact state climate goals significantly. Section 4.3 addresses the timing of choices between zero-emission and liquid combustion fuels, shows that a zero-emission hydrogen alternative could be deployed during a critical window for breaking carbon lock-in, and assesses HEFA growth impacts on the emission prevention, clean fuels development, and transition mitigation effectiveness of this alternative.

4.1 California climate goals and implementation pathway benchmarks background related to HEFA biofuel impact issues assessed

4.1.1 State climate goals and pathways that HEFA biofuels growth could affect

State climate goals call for cutting greenhouse gas emissions 80% below 1990 emissions to a 2050 target of 86.2 million tons per year,⁷⁷ for zero-emission vehicles (ZEVs) to be 100% of

light-duty vehicle (LDV) sales by 2035 and 100% of the medium- and heavy-duty vehicle (MDV and HDV) fleet by 2045,⁷⁸ and for achieving net-zero carbon neutrality by 2045.⁷⁹


Behind the net-zero goal lies a highly consequential tradeoff: deeper emission cuts require transforming hard-to-decarbonize uses of energy. Relying on carbon dioxide removal-and-sequestration (CDR) instead risks failure to cut emissions until too late. The state has begun to confront this tradeoff by developing climate pathways that range from near-zero carbon to high-CDR. These pathways show how various types of biofuels and other technologies and measures fit into lower-emission and higher-emission approaches to achieving state climate goals.

Pathway scenarios developed by Mahone et al. for the California Energy Commission (CEC),⁵⁴ Air Resources Board⁵⁵ and Public Utilities Commission,⁵⁶ Austin et al. for the University of California,⁵⁷ and Reed et al. for UC Irvine and the CEC⁵⁸ add semi-quantitative benchmarks to the 2050 emission target, for assessing refinery conversions to biofuels. They join other work in showing the need to decarbonize electricity and electrify transportation.^{54–61} Their work "bookends" the zero-carbon to high–CDR range of paths to state climate goals,⁵⁵ analyzes the roles of liquid hydrocarbon combustion fuels and hydrogen in this context,^{54–58} and addresses potential biomass fuel chain effects on climate pathways.^{54 55 57}

4.1.2 <u>State climate pathway liquid fuels volume benchmarks that HEFA biofuels growth</u> <u>could affect</u>

Total liquid transportation fuels benchmark: ~1.6 to 3.3 billion gallons by 2045

All state pathways to net-zero emissions cut liquid petroleum fuels use dramatically, with biofuels replacing only a portion of that petroleum. Chart 2 illustrates the "bookends" of the zero-carbon to high-CDR range of pathways for transportation reported by Mahone et al.⁵⁵

2. California Transportation Fuels Mix in 2045: Balanced and "bookend" pathways to the California net-zero carbon emissions goal.

Adapted from Figure 8 in Mahone et al. (2020a⁵⁵). Fuel shares converted to diesel energy-equivalent gallons based on Air Resources Board LCFS energy density conversion factors. **CDR:** carbon dioxide removal (sequestration).

Total liquid hydrocarbon combustion fuels for transportation in 2045, including petroleum and biofuels, range among the pathways from approximately 1.6 to 3.3 billion gallons/year (Chart 2), which is roughly 9% to18% of statewide petroleum transportation fuels use from 2013–2017.⁵⁵ Liquid biofuels account for approximately 1.4 to 1.8 billion gallons/year, which is roughly 40% to 100% of liquid transportation fuels in 2045 (Chart 2). Importantly, up to 100% of the biofuels in these pathways would be derived from cellulosic biomass feedstocks^{57 80 81} instead of purpose-grown lipids which HEFA technology relies upon, as discussed below.

HEFA biofuels volume benchmark: zero to 1.5 billion gallons per year through 2045

Many State climate pathways exclude or cap HEFA biofuel. Mahone et al. assume biofuels included in the pathways use cellulosic residues that are not purpose-grown—and cap those fuels in most scenarios to the per capita state share of non-purpose-grown U.S. biomass supply.^{54 55} This excludes purpose-grown lipids-derived biofuels such as the HEFA biofuels. Austin et al.⁵⁷ assume a cap on lipids biomass that limits HEFA jet fuel and diesel use to a maximum of 0.5–0.6 and 0.8–0.9 billion gallons/year, respectively. Both Austin⁵⁷ and Mahone^{54 55} cite difficult-to-predict land use emissions as reasons to limit purpose-grown crop and lipid-derived biofuels *as pathway development constraints* rather than as problems with the Low Carbon Fuel Standard (LCFS). This report agrees with that view: the need and ability to limit HEFA volume is a climate pathway impact issue—and local land use impact issue—not a criticism of the LCFS. <u>See</u> Box below.

4.1.3 <u>Electrolysis hydrogen benchmarks for systemic energy integration that affect the timing of choices between zero-emission versus liquid combustion fuels</u>

To replace combustion fuels in hard-to-electrify sectors, state climate pathways rely in part on "energy integration" measures, which often rely on electrolysis hydrogen, as discussed below.

Hydrogen for hard-to-decarbonize energy uses

Hydrogen, instead of HEFA diesel, could fuel long-haul freight and shipping. Hydrogen stores energy used to produce it so that energy can be used *where* it is needed for end-uses of energy that are hard to electrify directly, and *when* it is needed, for use of solar and wind energy at night and during calm winds. Climate pathways use hydrogen for hard-to-electrify emission sources in transportation, buildings and industry, and to support renewable electricity grids.

What is renewable-powered electrolysis hydrogen?

Electrolysis produces hydrogen from water using electricity. Oxygen is the byproduct, so solar and wind-powered electrolysis produces zero-emission hydrogen. State climate pathways consider three types of electrolysis: alkaline, proton-exchange membrane, and solid oxide electrolyzers.^{55 58} The alkaline and proton-exchange membrane technologies have been proven in commercial practice.⁵⁸ Renewable-powered electrolysis plants are being built and used at increasing scale elsewhere,⁸² and California has begun efforts to deploy this technology.⁵⁸

Biofuels in the Low Carbon Fuel Standard (LCFS)

What the LCFS does	What we still need to do in other ways
Reduces the carbon intensity (CI) of transportation fuels	Reduce carbon-based fuel volume and volume- related mass emissions
Reduces transportation fuels CI by increments, over increments of time	Avoid committing to fuels that would exceed 2045 climate targets despite early incremental CI cuts
Moves money from higher-CI to lower-CI fuel producers	Build long-lasting production only for those fuels which will not exceed 2045 climate targets
Applies to fuels sold for use in the state, including biofuels, fossil fuels, electricity and hydrogen fuels	Prevent imports that people elsewhere need for their own biomass-based food and fuel
Compares the CI of each biofuel to the CI of the petroleum fuel it could replace across the whole fuel chains of both. To move dollars from higher to lower CI fuel producers, a specific "lifecycle" CI number estimate is made for each biofuel, from each type of biomass production, biofuel production, and fuel combustion in transportation for that biofuel	Directly monitor all the worldwide interactions of biomass fuel and food chains—to find out <i>before</i> an impact occurs. For example, what if increasing demand for soy-based biofuel leads farmers to buy pastureland for soybean plantations, leading displaced ranchers to fell rainforest for pastureland in another environment, state, or country?
Relies on currently quantifiable data for carbon emissions from harvesting each specific type of biomass for biofuel. The LCFS <i>has to</i> do this to come up with the specific CI numbers it uses to incrementally reduce transportation fuels CI now	Realize that some serious risks need to be avoided before they become realities which can be fully quantified, find out which biofuels pose such risks, and avoid taking those serious risks
This report does not assess the performance of the LCFS for its intended purpose — that is beyond the report scope. <i>This report should not be interpreted as a criticism or endorsement of the LCFS.</i>	HEFA biofuel risks that the LCFS is not designed to address are assessed in this report. <i>There are other ways to address these HEFA risks.</i>

Electrolysis is not the only proven hydrogen production technology considered in state climate pathways; however, it is the one that can store solar and wind energy, and electrolysis hydrogen can decarbonize hard-to-electrify emission sources without relying on CDR.

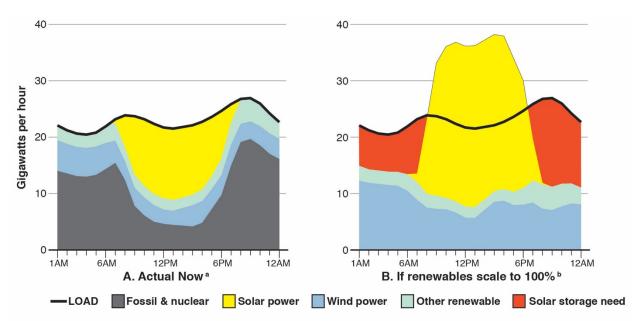
Renewable-powered electrolysis for zero-emission transportation

Renewable-powered electrolysis hydrogen could be critical for zero-emission transportation. Hydrogen fuel shares shown in Chart 2 represent fuel cell-electric vehicle (FCEV) fueling. Fuel cells in FCEVs convert the hydrogen back into electricity that powers their electric motors. Thus, hydrogen stored in its fuel tank is the "battery" for this type of electric vehicle. FCEVs can decarbonize transportation uses of energy where battery-electric vehicles (BEVs) might be more costly, such as long-haul freight and shipping, in which the size and mass of BEV batteries needed to haul large loads long distances reduce the load-hauling capacity of BEVs.

This zero-emission electrolysis hydrogen also plays a key role because it fuels FCEVs without relying on CDR. These zero-emission FCEVs appear crucial to the feasibility of the

state climate goal for a 100% ZEV medium- and heavy-duty fleet by 2045.⁷⁸ This raises a turnkey issue because—as the difference in hydrogen fuel share between the High-CDR and the Balanced pathways in Chart 2 reflects—both electrolysis and FCEVs are proven technologies, but they nevertheless face significant infrastructure deployment challenges.^{54–61}

In state climate pathways, renewable hydrogen use in transportation grows from an average of 1.24 million standard cubic feet per day (MMSCFD) in 2019⁸³ to roughly 1,020–1,080 MMSCFD by 2045.^{56–58} This 2045 range reflects different scenarios for the mix of BEVs and FCEVs in different vehicle classes. The low end excludes FCEV use in LDVs⁵⁸ while the high end is a "central scenario" that includes both BEV and FCEV use in all vehicle classes.⁵⁷


Renewable-powered electrolysis for future solar and wind power growth

Hydrogen produced by electrolysis can store solar and wind power energy, which supports the renewable energy growth needed to produce more zero-emission FCEV fuel by electrolysis. Electrolysis hydrogen plays a key role in the further growth of solar and wind energy resources, because it can store that energy efficiently for use overnight as well as over longer windless periods. The direct use of electricity for energy—in grid jargon, the "load"—occurs in the same instant that electricity is generated. This is a challenge for climate pathways because solar and wind power are intermittent electricity generators, while electricity use (load) is continuous, and varies differently from solar and wind power generation over time.

Substantial energy storage will be critical to a renewable electricity grid. There are other storage technologies such as ion batteries, compressed air, hydropower management and power-to-gas turbines, and climate pathways include multiple measures to balance renewable grids.^{54–61} However, electrolysis hydrogen is particularly beneficial because it can provide efficient long-term storage over wind cycles as well as short-term storage over solar cycles while fueling ZEV growth. Charts 3 A and B below illustrate the scale of the solar energy storage need.

Load, the thick black curve that does not change from Chart A to Chart B, shows how much electric power we need and when we need it. In the renewables scale-up scenario (B), the yellow above the load curve is peak solar generation that could be wasted ("curtailed") if it cannot be stored, and the red below the load curve indicates "blackouts" we could avoid by storage of the otherwise wasted energy for use when it gets dark. This is only an example on one hypothetical day, but to continue the illustration, the energy that storage could shift, from yellow above the load curve to red below it, compares to the energy stored in ~1,500 MMSCF of hydrogen.

State climate pathways assign electrolysis a key role in meeting part of this enormous gridbalancing need. Energy storage would be accomplished by a mix of technologies and measures, including renewable-powered electrolysis hydrogen and others.^{54–58} Increasing needs for energy storage in climate pathways become substantial before 2030, and the role of electrolysis hydrogen in this storage grows by up to approximately 420 MMSCFD by 2045.⁵⁸

3. California electricity load shape on 20 April: Actual in 2021 v. renewable power.

A high-renewables future will require short-term storage of peak solar power generation for use at night. <u>See</u> yellow above and red below the black line showing total electricity load that can be used at the time power is generated, in this example. Solar electrolysis hydrogen stored in the fuel tanks of zero-emission trucks could be a needed part of the solution. **a.** Data reported for 20 April 2021.⁸⁴ **b.** Example scenario scales up solar and wind data proportionately to replace total fossil and nuclear generation on this day.

Renewable-powered electrolysis hydrogen for least-cost energy integration measures

Climate pathway analyses underscore both the challenge and the benefits of integrating electrolysis hydrogen across the transportation and electricity sectors. The scale-up challenge appears urgent. From ~2.71 MMSCFD by the end of 2021,⁵⁸ in-state electrolysis capacity would reach ~1,440–1,500 MMSCFD by 2045 to meet all of the transportation and energy storage needs for hydrogen discussed above.^{56–58} Ramping to that scale, however, achieves economies of scale in electrolysis hydrogen production and fueling that overcome significant deployment barriers to growth of this zero-emission FCEV fuel; electrolysis hydrogen costs can be expected to fall from above to below those of steam reforming hydrogen around 2025–2035.^{55 56 58 84 85} Policy intervention to meet critical needs for earlier deployment is assumed to drive ramp-up.⁵⁸

Then, once deployed at scale, integration of electrolysis, transportation and the electricity grid can provide multiple systemic benefits. It can cut fuel costs by enabling FCEVs that are more efficient than diesel or biofuel combustion vehicles,⁸⁶ cut health costs by enabling zeroemission FCEVs,^{57 87} cut energy costs by using otherwise wasted peak solar and wind power,^{58 85} and enable priority measures needed to decarbonize hard-to-electrify energy emissions.^{54 55 57 58 85} From the perspective of achieving lower-risk climate stabilization pathways, renewable-powered electrolysis hydrogen may be viewed as a stay-in-business investment.

State climate pathway benchmarks for hydrogen energy storage, transportation fuel, and refining that HEFA biofuel growth could affect

Electrolysis hydrogen production in state pathways could reach ~ 420 MMSCFD for energy storage and approximately 1,020–1,080 MMSCFD for transportation, as noted above, and could grow due to a third need and opportunity, which also could be affected by HEFA biofuel growth. The Hydrogen Roadmap in state climate pathways includes converting petroleum refining to renewable hydrogen production,⁵⁸ an enormously consequential measure, given that current hydrogen capacity committed to crude refining statewide totals ~1,216 MMSCFD.⁸⁸

4.1.4 <u>Replacement of gasoline with BEVs would idle crude refining capacity for distillates</u> as well, accelerating growth of a petroleum diesel replacement fuels market that <u>ZEVs, biofuels, or both could capture</u>

BEVs could replace gasoline quickly

Gasoline combustion inefficiencies make battery electric vehicle (BEV) replacement of gasoline a cost-saving climate pathway measure. By 2015 BEVs may already have had lower total ownership cost than gasoline passenger vehicles in California.⁸⁹ BEVs go three times as far per unit energy as same-size vehicles burning gasoline,⁹⁰ have fewer moving parts to wear and fix—for example, no BEV transmissions—have a fast-expanding range, and a mostly-ready fuel delivery grid. Economics alone should make gasoline obsolete as fast as old cars and trucks wear out, strongly supporting the feasibility of state goals for BEVs and other zero-emission vehicles (ZEVs) to comprise 100% of light-duty vehicle (LDV) sales by 2035.⁷⁸ State climate pathways show that BEVs can be 30–100% of LDV sales by 2030–2035, 60–100% of LDV and medium-duty vehicle sales by 2030–2045, and comprise most of the California vehicle fleet by 2045.^{55 57} Electricity-powered LDVs and MDVs would thus replace gasoline relatively quickly.

Gasoline replacement would idle petroleum distillates production

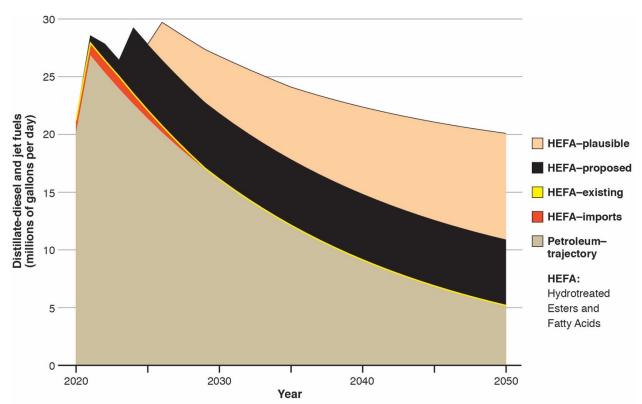
Crude refining limitations force petroleum distillate production cuts as gasoline is replaced. Existing California refineries cannot make distillates (diesel and jet fuel) without coproducing gasoline. From 2010–2019 their statewide distillates-to-gasoline production volumes ratio was 0.601 and varied annually from only 0.550 to 0.637.⁹¹ This reflects hard limits on refining technology: crude distillation yields a gasoline hydrocarbon fraction, and refineries are designed and built to convert other distillation fractions to gasoline, not to convert gasoline to distillates. During October–December in 2010–2019, when refinery gasoline production was often down for maintenance while distillate demand remained high, the median distillate-to-gasoline ratio rose only to 0.615.¹ That is a conservative estimate for future conditions, as refiners keep crude rates high by short-term storage of light distillation yield for gasoline production after equipment is returned to service.¹⁹¹ When gasoline and jet fuel demand fell over 12 months following the 19 March 2020 COVID-19 lockdown³⁶ the ratio fell to 0.515.⁹¹ Future permanent loss of gasoline markets could cut petroleum distillate production to less than 0.615 gallons per gallon gasoline. Climate pathways thus replace petroleum distillates along with gasoline.

Existing distillates distribution infrastructure favors biofuels, emphasizing the need for early deployment of FCEVs and zero-emission electrolysis hydrogen

Fuel cell-electric vehicle (FCEV) transportation faces a challenge in the fact that existing petroleum distillates distribution infrastructure can be repurposed to deliver drop-in biofuels to truck, ship, and jet fuel tanks, while hydrogen fuel infrastructure for FCEVs must ramp up. Hydrogen-fueled FCEV growth thus faces deployment challenges which biofuels do not.^{54–61} Those infrastructure challenges underly the urgent needs for early deployment of FCEVs and electrolysis hydrogen identified in state climate pathway analyses.^{54–58} Indeed, early deployment is an underlying component of the climate pathway benchmarks identified above.

4.2 HEFA biofuels growth could exceed state climate pathway benchmarks for liquid fuels volumes, interfere with achieving electrolysis hydrogen energy integration benchmarks, and exceed the state climate target for emissions in 2050

4.2.1 <u>HEFA biofuels growth could exceed state climate pathway benchmarks for liquid</u> <u>fuels volumes</u>


Proposed projects would exceed HEFA biofuel caps

Current proposals to repurpose in-state crude refining assets for HEFA biofuels could exceed the biofuel caps in state climate pathways by 2025. New in-state HEFA distillate (diesel and jet fuel) production proposed by P66, MPC, AltAir and GCE for the California fuels market would, in combination, total ~2.1 billion gal./y and is planned to be fully operational by 2025.¹⁻⁶ If fully implemented, these current plans alone would exceed the HEFA diesel and jet fuel caps of 0.0–1.5 billion gal./y in state climate pathways (§4.1.2).

Continued repurposing of idled crude refining assets for HEFA biofuels could exceed the total liquid combustion fuels volume benchmarks in state climate pathways

Further HEFA biofuels growth, driven by incentives for refiners to repurpose soon-to-bestranded crude refining assets before FCEVs can be deployed at scale, could exceed total liquid fuels combustion benchmarks for 2045 in state climate pathways. As BEVs replace petroleum distillates along with gasoline, crude refiners could repurpose idled petroleum assets for HEFA distillates before FCEVs ramp up (§ 4.1.4), and refiners would be highly incentivized to protect those otherwise stranded assets (Chapter 1).

Chart 4 illustrates a plausible future HEFA biofuel growth trajectory in this scenario. Declining petroleum diesel and jet fuel production forced by gasoline replacement with BEVs (gray-green, bottom) could no longer be fully replaced by currently proposed HEFA production (black) by 2025–2026. Meanwhile the idled crude refinery hydrogen production and processing assets repurpose for HEFA production (light brown, top). As more petroleum refining assets are stranded, more existing refinery hydrogen production is repurposed for HEFA fuels, increasing the additional HEFA production from left to right in Chart 4.

As electric vehicles replace gasoline, stranding petroleum refining assets, continuing HEFA biorefining expansion could add as much as 15 million gallons per day (290%) to the remaining petroleum distillatediesel and jet fuel refined in California by 2050. Locking in this combustion fuels additive could further entrench the incumbent combustion fuels technology in a negative competition with cleaner and lowercarbon technologies, such as renewable-powered hydrogen fuel cell electric vehicles (FCEVs). That could result in continued diesel combustion for long-haul freight and shipping which might otherwise be decarbonized by zero emission hydrogen-fueled FCEVs.

Petroleum-trajectory for cuts in petroleum refining of distillate (D) and jet (J) fuels that will be driven by gasoline replacement with lower-cost electric vehicles, since petroleum refineries cannot produce as much D+J when cutting gasoline (G) production. It is based on 5.56%/yr light duty vehicle stock turnover and a D+J:G refining ratio of 0.615. This ratio is the median from the fourth quarter of 2010–2019, when refinery gasoline production is often down for maintenance, and is thus relatively conservative. Similarly, state policy targets a 100% zero-emission LDV fleet by 2045 and could drive more than 5.56%/yr stock turnover. Values for 2020–2021 reflect the expected partial rebound from COVID-19.

HEFA-imports and **HEFA-existing** are the mean D+J "renewable" volumes imported, and refined in the state, respectively, from 2017–2019. The potential in-state expansion shown could squeeze out imports.

HEFA-proposed is currently proposed new in-state capacity based on 80.9% D+J yield on HEFA feed including the Phillips 66 Rodeo, Marathon Martinez, Altair Paramount, and GCE Bakersfield projects, which represent 47.6%, 28.6%, 12.8%, and 11.0% of this proposed 5.71 MM gal/day total, respectively.

HEFA-plausible: as it is idled along the petroleum-based trajectory shown, refinery hydrogen capacity is repurposed for HEFA biofuel projects, starting in 2026. This scenario assumes feedstock and permits are acquired, less petroleum replacement than state climate pathways,⁵⁵ and slower HEFA growth than new global HEFA capacity expansion plans targeting the California fuels market⁹² anticipate. Fuel volumes supported by repurposed hydrogen capacity are based on H₂ demand for processing yield-weighted feedstock blends with fish oil growing from 0% to 25%, and a J:D product slate ratio growing from 1:5.3 to 1:2, during 2025–2035.

For data and methodological details see Table A7.1

Refining and combustion of HEFA distillates in California could thus reach ~15.0 million gal./d (5.47 billion gal./y), ~290% of the remaining petroleum distillates production, by 2050.^{1.} HEFA distillate production in this scenario (5.47 billion gal./y) would exceed the 1.6–3.3 billion gal./y range of state climate pathways for combustion of *all* liquid transportation fuels, including petroleum and biofuel liquids, in 2045.⁵⁵ This excess combustion fuel would squeeze out cleaner fuels, and emit future carbon, from a substantial share of the emergent petroleum distillate fuels replacement market—a fuel share which HEFA refiners would then be motivated to retain.

This climate impact of HEFA biofuels growth is reasonably foreseeable

The scenario shown in Chart 4 is an illustration, not a worst case. It assumes slower growth of HEFA biofuel combustion in California than global investors anticipate, less petroleum fuels replacement than state climate pathways, and no growth in distillates demand. Worldwide, the currently planned HEFA refining projects targeting California fuel sales total ~5.2 billion gal./y by 2025.⁹² HEFA growth by 2025 in the Chart 4 scenario is less than half of those plans. State climate pathways reported by Mahone et al.⁵⁵ replace ~92% of current petroleum use by 2045, which would lower the petroleum distillate curve in Chart 4, increasing the potential volume of petroleum replacement by HEFA biofuel. Further, in all foreseeable pathways, refiners would be incentivized to protect their assets and fuel markets—and there are additional reasons why HEFA biofuel could become locked-in, as discussed below.

4.2.2 <u>Continued use of steam reforming for refinery hydrogen could interfere with meeting</u> state climate pathway benchmarks for electrolysis hydrogen energy integration, and lock HEFA biofuels in place instead of supporting transitions to zero-emission fuels

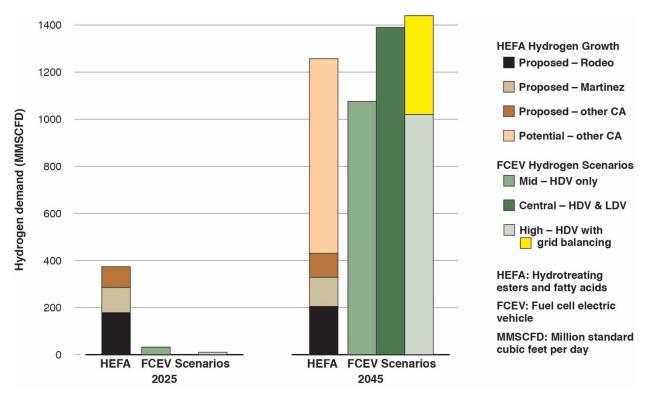
In contradiction to the conversion of refineries to renewable hydrogen in state climate pathways (§4.1.3), refiners propose to repurpose their high-carbon steam reforming hydrogen production assets for HEFA biofuels refining (chapters 1, 3). This would foreclose the use of that hydrogen for early deployment of ZEVs and renewable energy storage, the use of those sites for potentially least-cost FCEV fueling and renewable grid-balancing, and the future use of that hydrogen by HEFA refiners in a pivot to zero emission fuels. These potential impacts, together with HEFA refiner motivations to retain market share (§ 4.2.1), could result in HEFA diesel becoming a locked-in rather than a transitional fuel.

Repurposing refinery steam reforming for HEFA would circumvent a renewable hydrogen benchmark and interfere with early deployment for FCEVs and energy storage, slowing growth in ZEV hydrogen fuel and renewable energy for ZEV fuels production

Repurposing refinery steam reforming for HEFA fuels, as refiners propose,^{2–6} instead of switching crude refining to renewable hydrogen, as the hydrogen roadmap in state climate pathways envisions,⁵⁸ could foreclose a very significant deployment potential for zero-emission fuels. Nearly all hydrogen production in California now is steam reforming hydrogen committed to oil refining.⁵⁶ Statewide, crude refinery hydrogen capacity totals ~1,216 MMSCFD,⁸⁸ some 980 times renewable hydrogen use for transportation in 2019 (1.24 SCFD)⁸³ and ~450 times planned 2021 electrolysis hydrogen capacity (~2.71 MMSCFD).⁵⁸ Repurposing crude refining

hydrogen production for HEFA refining would perpetuate the commitment of this hydrogen to liquid combustion fuels instead of other potential uses. Importantly, that hydrogen would not be available for early deployment of FCEVs in the hard-to-electrify long haul freight and shipping sectors, or energy storage grid-balancing that will be needed for solar and wind power growth to fuel both zero emission FCEVs and BEVs.

By blocking the conversion of idled refinery hydrogen capacity to renewable hydrogen, repurposing idled crude refinery steam reforming for HEFA biofuels could slow ZEV fuels growth. Chart 5 below illustrates the scale of several potential impacts. Hydrogen demand for HEFA biofuels could exceed that for early deployment of FCEVs (Chart, 2025), exceed hydrogen demand for energy storage grid-balancing (Chart, 2045), and rival FCEV fuel demand for hydrogen in climate pathways through mid-century (*Id.*). ZEV growth could be slowed by foreclosing significant potential for zero-carbon hydrogen and electricity to produce it.


Repurposing refinery steam reforming could foreclose electrolysis deployment in key locations, potentially blocking least-cost FCEV fueling and grid-balancing deployment

Repurposing idled crude refinery steam reforming for HEFA biofuel production would foreclose reuse of otherwise idled refinery sites for renewable-powered electrolysis hydrogen. This site foreclosure impact could be important because of the potential electrolysis sites availability and location. Proximity to end-use is among the most important factors in the feasibility of renewable hydrogen build-out,⁵⁸ and refineries are near major California freight and shipping corridors and ports, where dense land uses make the otherwise idled sites especially useful for electrolysis siting. Repurposing crude refineries for HEFA biofuels could thus slow the rapid expansion of renewable-powered electrolysis hydrogen needed in climate pathways.

Continued use of steam reforming would lock HEFA refiners out of future ZEV fueling, further contributing to HEFA combustion fuels lock-in

Committing HEFA refineries to carbon-intensive steam reforming hydrogen would lock the refiners, who then would not be able to pivot toward future fueling of zero-emission FCEVs, into continued biofuel production. HEFA refiners would thus compete with hydrogen-fueled FCEVs in the new markets for fuels to replace petroleum diesel. In this HEFA growth scenario, the hydrogen lock-in, electrolysis site lockout, and ZEV fuel impacts described directly above could be expected to reinforce their entrenched position in those markets. This would have the effect of locking refiners into biofuels instead of ZEV fuels, thereby locking-in continued biofuel use at the expense of a transition to zero-emission fuels.

Crucially, multiple state pathway scenario analyses^{54–56 58} show that the simultaneous scaleup of FCEVs in hard-to-electrify sectors, renewable-powered electrolysis for their zero-emission fuel, and solar and wind power electricity to produce that hydrogen, already faces substantial challenges—apart from this competition with entrenched HEFA biofuel refiners.

5. Potential growth in hydrogen demand for HEFA biorefineries, fuel cell electric vehicle (FCEV) goods movement, and renewable electricity grid balancing to 2025 and 2045.

HEFA biorefineries could slow the growth of zero-emission goods movement, and of renewable electricity, by committing limited hydrogen supplies to drop-in diesel before the cleaner technologies ramp up (chart, 2025), by rivaling their demand for large new hydrogen supplies through mid-century (chart, 2045), and by committing to the wrong type of hydrogen production technology. H₂ supplied by electrolysis of water with renewable electricity could fuel FCEVs to decarbonize long-haul goods movement, and could store peak solar and wind energy to balance the electricity grid, enabling further growth in those intermittent energy resources. However, nearly all California H₂ production is committed to oil refining as of 2021. Refiners produce this H₂ by carbon-intensive steam reforming, and propose to repurpose that fossil fuel H₂ technology, which could not pivot to zero-emission FCEVs or grid balancing, in their crude-to-biofuel refinery conversions.

HEFA proposed based on H₂ demand estimated for P66 Rodeo, MPC Martinez, and other California HEFA projects proposed or in construction as of May 2021. H₂ demand increases from 2025–2045 as HEFA feedstock, jet fuel, and H₂/b demands increase. For data and methods details <u>see</u> Table A7.¹ **HEFA potential** based on H₂ production capacity at California petroleum refineries, additional to that for currently proposed projects, which could be idled and repurposed for potential HEFA projects along the trajectory shown in Chart 4. <u>See</u> Table A7 for data and details of methods.¹

FCEV Mid – HDV only from Mahone et al. (2020b),⁵⁶ FCEVs are ~2% and 50% of new heavy duty vehicle sales in California and other U.S. western states by 2025 and 2045, respectively.⁵⁶

Central – HDV & LDV from Austin et al. (2021), H₂ for California transportation, central scenario, LC1.⁵⁷ **High – HDV with grid balancing** from Reed et al. (2020), showing here two components of total demand from their high case in California: non-LDV H₂ demand in ca. 2025 and 2045, and H₂ demand for storage and firm load that will be needed to balance the electricity grid as solar and wind power grow, ca. 2045.⁵⁸

4.2.3 Potential carbon emissions could exceed the 2050 climate target

CO₂e emissions from the HEFA growth scenario were estimated based on LCFS carbon intensity values⁸⁶ weighted by the HEFA fuels mix in this scenario,¹ accounting for emission shifting effects described in Chapter 2. Accounting for this emission shift that would be caused by replacing petroleum with excess HEFA biofuel use in California at the expense of abilities to do so elsewhere—excluding any added land use impact—is consistent with the LCFS and state climate policy regarding emission "leakage."⁶² Results show that HEFA diesel and jet fuel CO₂e emissions in this scenario could reach 66.9 million tons (Mt) per year in 2050. *See* Table 5.

Table 5. Potential CO₂e emissions in 2050 from HEFA distillates refined and used in California.

Distillates volume						
HEFA distillates refined and burned in CA ^a	5.47	billion gallons per year				
CA per capita share of lipid-based biofuel b	0.58	billion gallons per year				
Excess lipids shifted to CA for HEFA biofuel ^c	4.89	billion gallons per year				
Distillate fuels mix						
HEFA diesel refined and burned in CA d	66.7	percentage of distillates				
HEFA jet fuel refined and burned in CA $^{\scriptscriptstyle d}$	33.3	percentage of distillates				
Fuel chain carbon intensity						
HEFA diesel carbon intensity ^e	7.62	kg CO₂e/gallon				
HEFA jet fuel carbon intensity e	8.06	kg CO₂e/gallon				
Petroleum diesel carbon intensity e	13.50	kg CO ₂ e/gallon				
Petroleum jet fuel carbon intensity e	11.29	kg CO ₂ e/gallon				
Emissions (millions of metric tons as CO₂e)						
From CA use of per capita share of lipids	4.50	millions of metric tons per year				
From excess CA HEFA use shifted to CA	37.98	millions of metric tons per year				
Emissions shift to other states and nations f	24.44	millions of metric tons per year				
Total HEFA distillate emissions	66.92	millions of metric tons per year				

a. Potential 2050 HEFA distillates refinery production and use in California in the scenario shown in Chart 4.1
b. Statewide per capita share of U.S. farm yield for all uses of lipids used in part for biofuels, from data in Table 1, converted to distillates volume based on a feed specific gravity of 0.914 and a 0.809 feed-to-distillate fuel conversion efficiency. Importantly, these purpose-grown lipids have other existing uses (Chapter 2).
c. Excess lipid biomass taken from other states or nations. This share of limited lipid biomass could not be used

c. Excess lipid biomass taken from other states or nations. This share of limited lipid biomass could not be used elsewhere to replace petroleum with HEFA biofuels. Per capita share of total U.S. production for all uses, rather than that share of lipids available for biofuel, represents a conservative assumption in this estimate.
 d. Distillate fuels mix in 2050 (1 gallon jet fuel to 3 gallons diesel) as described in Table A7 part f.¹

f. Future emissions that would not occur if other states and nations had access to the lipid feedstock committed to California biofuel refining and combustion in excess of the state per capita share shown. Shifted emissions based on the difference between HEFA and petroleum CI values for each fuel, applied to its fuels mix percent of excess lipid-based distillates shifted to CA for HEFA biofuel. Accounting for emissions caused by replacing petroleum in CA *instead of* elsewhere, separately from any added land use impact, is consistent with the LCFS and state climate policy regarding "leakage."⁶² Total emissions thus include shifted emissions.

e. Carbon intensity (CI) values from tables 3, 7-1, and 8 of the California LCFS Regulation.⁸⁶ HEFA values used (shown) were derived by apportioning "fats/oils/grease residues" and "any feedstocks derived from plant oils" at 31% and 69%, respectively, based on the data in Table 1.

Emissions from the remaining petroleum distillate fuels in this scenario, ~5,113,000 gal./d or 1.87 billion gal./y (Chart 4; Table A7¹), would add 22.1–24.2 Mt/y, if diesel is 25–75% of the 2050 petroleum distillates mix, at the petroleum carbon intensities in Table 5. Thus, distillate transportation fuel emissions alone (89–91 Mt/y) could exceed the 86.2 Mt/y 2050 state target for CO₂e emissions from all activities statewide.⁷⁷ Total 2050 emissions would be larger unless zeroed out in all other activities statewide. Repurposing idled petroleum refinery assets for HEFA biofuels threatens state climate goals.

4.3 A zero-emission electrolysis hydrogen alternative can be deployed during a crucial window for breaking carbon lock-in: HEFA biofuels growth could impact the timing, and thus the emission prevention, clean fuels development, and transition benefits, of this zero-emission electrolysis hydrogen alternative.

Potential benefits to climate pathways from converting hydrogen production to renewablepowered electrolysis (electrolysis) at refinery sites were assessed with and without HEFA biofuels expansion. The "HEFA Case" captures proposed and potential HEFA growth; the "No HEFA Case" is consistent state climate pathways that exclude purpose-grown lipids-derived biofuels in favor of cellulosic residue-derived biofuels.^{54 55} Conversion to electrolysis is assumed to occur at crude refineries in both cases, consistent with the hydrogen road map in state climate pathways,⁵⁸ but as an early deployment measure—assumed to occur during 2021–2026. This measure could reduce refinery carbon intensity, increase zero-emission transportation and electricity growth, and reduce local transition impacts significantly, and would be more effective if coupled with a cap on HEFA biofuels.

4.3.1 <u>Electrolysis would prevent HEFA biofuels from increasing the carbon intensity of</u> <u>hydrocarbon fuels refining</u>

Deployment timing emerges as the crucial issue in this analysis. "It is simpler, less expensive, and more effective to introduce inherently safer features during the design process of a facility rather than after the process is already operating. Process upgrades, rebuilds, and repairs are additional opportunities to implement inherent safety concepts."⁷⁰ The design phase for HEFA refinery conversions, and petroleum refinery turnarounds that occur on 3- to 5-year cycles are critical insertion points for electrolysis in place of carbon-intensive steam reforming. This zero-emission measure would cut the carbon intensity of refining at any time, however, climate stabilization benefit is directly related to the cumulative emission cut achieved, so the effectiveness of this measure would also depend upon how quickly it would be deployed.

Refining CI benefits in the HEFA Case

Replacing steam reforming with electrolysis could cut the carbon intensity (CI) of HEFA refining by \sim 72–79%, from \sim 76–101 kg/b to \sim 21 kg/b refinery feed (Chapter 3). This would cut the CI of HEFA fuels processing from significantly above that of the average U.S. petroleum refinery (\sim 50 kg/b crude; *Id.*) to significantly below the CI of the average U.S. crude refinery.

Refining CI benefits in the No HEFA Case

Replacing steam reforming with electrolysis at petroleum refineries would reduce CI by ~34% based on San Francisco Bay Area data,⁶⁶ however, in other states or nations where refiners run less carbon-intensive crude and product slates than in California, this ~34% may not apply.⁶⁴

Refining CI reduction effectiveness

Cumulative emission cuts from hydrogen production would be the same in both cases since hydrogen emissions would be eliminated from HEFA refineries in both cases. Based on the CI values above and the HEFA growth trajectory¹ in Chart 4 this measure could prevent ~194–282 million tons (Mt) of CO₂ emission from HEFA hydrogen production through 2050. Petroleum refinery emissions could be cut by 103 Mt through 2050, based on the median mixed feed CI of steam reforming (24.9 g/SCF, Table 3) and the remaining refinery hydrogen production underlying the distillates trajectory in Chart 4 from 2026–2050.¹ Total direct *cumulative* emissions prevented could be ~297–400 Mt. *Annual* fuel chain emissions from all distillates in transportation in 2050 (89–91 Mt/y) could be cut by ~12–16%, to ~76–78 Mt/y in the HEFA Case. In the No HEFA Case annual fuel chain emissions from petroleum distillates in 2050 (~22–24 Mt/y) could be cut by ~8–9%, to ~20–22 Mt/y, although use of other biofuels along with ZEVs could add to that 20–22 Mt/y significantly. This measure would be effective in all cases, and far more effective in climate pathways that cap HEFA growth and transition to ZEVs.

4.3.2 <u>Use of electrolysis would facilitate development of hydrogen for potential future use</u> in transportation and energy storage

Deployment timing again is crucial. Electrolysis can integrate energy transformation measures across transportation and electricity, speeding both FCEV growth and renewable power growth (§ 4.1). Benefits of this energy integration measure could coincide with a window of opportunity to break free from carbon lock-in, which opened with the beginning of petroleum asset stranding shown in Chapter 1 and could close if refiner attempts to repurpose those assets entrench a new source of carbon in the combustion fuel chain. As Seto et al. conclude:

"Understanding how and when lock-in emerges also helps identify windows of opportunity when transitions to alternative technologies and paths are possible [.] ... either in emergent realms and sectors where no technology or development path has yet become dominant and locked-in or at moments when locked-in realms and sectors are disrupted by technological, economic, political, or social changes that reduce the costs of transition"⁹³

Here, in a moment when the locked-in petroleum sector has been disrupted, and neither FCEV nor HEFA technology has yet become dominant and locked into the emergent petroleum diesel fuel replacement sector, this electrolysis energy integration measure could reduce the costs of transition if deployed at scale (§ 4.1). Indeed, state climate pathway analyses suggest that the need for simultaneous early deployment of electrolysis hydrogen, FCEVs, and energy storage load-balancing—and the challenge of scaling it up in time—are hard to overstate (§§ 4.1, 4.2).

Clean fuels development benefits in the HEFA Case

Converting refinery steam reforming to electrolysis during crude-to-biofuel repurposing before 2026 and at refineries to be idled and repurposed thereafter could provide electrolysis hydrogen capacities in 2025 and 2045 equivalent to the HEFA steam reforming capacities shown in Chart 5. However, HEFA refining would use this hydrogen, foreclosing its use to support early deployment of FCEVs and energy storage, and could further commit the share of future transportation illustrated in Chart 4 to liquid combustion fuel chain infrastructure.

Planned policy interventions could deploy electrolysis⁵⁸ and FCEVs⁷⁸ separately from refinery electrolysis conversions, although less rapidly without early deployment of this measure. If separate early deployment is realized at scale, this measure would enable HEFA refiners to pivot toward FCEV fueling and energy storage later. However, refinery combustion fuel share lock-in (§4.2) and competition with the separately developed clean hydrogen fueling could make that biofuel-to-ZEV-fuel transition unlikely, absent new policy intervention.

Clean fuels development benefits in the No HEFA Case

In the No HEFA Case, cellulosic residue-derived instead of HEFA biofuels would be in climate pathways,⁵⁵ and crude refinery steam reforming would be converted to electrolysis when it is idled before 2026 and in turnarounds by 2026. Instead of committing converted electrolysis hydrogen to HEFA refining as crude refining capacity is idled, it would be available for FCEVs and energy storage in the same amounts shown in Chart 5. This could fuel greater early FCEV deployment than state climate pathways assume (Chart, 2025), provide more hydrogen energy storage than in the pathways (Chart, 2045), and fuel most of the FCEV growth in the pathways through 2045 (*Id.*). These estimates from Chart 5 are based on the petroleum decline trajectory¹ underlying Chart 4, which is supported by economic drivers as well as climate constraints (§ 4.1) and assumes slower petroleum replacement through 2045 than state climate pathways (§ 4.2).

Clean fuels development benefits effectiveness

Energy integration benefits of this measure could be highly effective in supporting early deployment of zero-emission transportation during a crucial window of opportunity for replacing liquid hydrocarbon combustion fuels, and could fuel hydrogen storage as well as most zero-emission FCEV growth needs thereafter, in the No HEFA Case. In the HEFA Case, however, those benefits could be limited to an uncertain post-2030 future. These results further underscore the importance of limiting HEFA biofuel growth in state climate pathways.

4.3.3 <u>Use of electrolysis could lessen transition impacts from future decommissioning of converted refineries</u>

Just transitions, tailored to community-specific needs and technology-specific challenges, appear essential to the feasibility of climate stabilization.^{66 94} Full just transitions analysis for communities that host refineries is beyond the scope of this report, and is reviewed in more detail elsewhere.^{66 94} However, the recent idling of refining capacity, and proposals to repurpose it for HEFA biofuels, raise new transition opportunities and challenges for California communities

which were identified in this analysis, affect the feasibility of climate pathways, and thus are reported here. Hydrogen plays a pivotal role in the new transition challenges and opportunities which communities that host California refineries now face.

Transition benefits in the HEFA Case

Electrolysis would enable HEFA refineries to pivot from using hydrogen for biofuel to selling it for FCEV fuel, energy storage, or both. Assuming state climate pathways that replace transportation biofuels with ZEVs⁵⁷ achieve the state goal for 100% ZEV medium- and heavy-duty vehicles by 2045,⁷⁸ this would allow HEFA refiners to transition from HEFA biofuel hydroconversion processing while continuing uninterrupted hydrogen production at the same sites. Potential benefits would include reduced local job and tax base losses as compared with total facility closure, and eliminating the significant refinery explosion/fire risk and local air pollution impacts from HEFA hydro-conversion processing that are described in Chapter 3.

However, HEFA lock-in could occur before the prospect of such a biofuel-to-ZEV fuel transition could arise (§ 4.2). Conversions to electrolysis would lessen incentives for refiners to protect assets by resisting transition, and yet their fuel shares in emerging petroleum distillates replacement markets and incentives to protect those market shares would have grown (*Id.*).

Transition benefits in the No HEFA Case

In the No HEFA Case electrolysis hydrogen could pivot to FCEV fueling, energy storage, or both as petroleum refining capacity is idled in state climate pathways. Petroleum asset idling would be driven by economic factors that replace gasoline as well as climate constraints and thus be likely to occur (§ 4.1). Indeed, it has begun to occur (Chapter 1) and is likely to gather pace quickly (§§ 4.1, 4.2). Local job and tax base retention resulting from this hydrogen pivot in the No HEFA Case could be of equal scale as in the HEFA case. Local benefits from elimination of refinery hazard and air pollution impacts upon site transition would be from replacing petroleum refining rather than HEFA refining and would be realized upon crude refinery decommissioning rather than upon repurposed HEFA refinery decommissioning years or decades later.

Transition benefits effectiveness

Electrolysis hydrogen could have a pivotal role in just transitions for communities that host refineries. However, transition benefits of electrolysis would more likely be realized, and would be realized more quickly, in the No HEFA Case than in the HEFA Case. Realization of these potential transition benefits would be uncertain in the HEFA Case, and would be delayed as compared with the No HEFA Case.

LITERATURE CITED

¹ Supporting Material Appendix for *Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing;* prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting, <u>www.energy-re-source.com</u>.

² Application for Authority to Construct Permit and Title V Operating Permit Revision for Rodeo Renewed Project: Phillips 66 Company San Francisco Refinery (District Plant No. 21359 and Title V Facility # A0016); Prepared for Phillips 66 by Ramboll US Consulting, San Francisco, CA. May 2021.

³ Initial Study for: Tesoro Refining & Marketing Company LLC—Marathon Martinez Refinery Renewable *Fuels Project;* received by Contra Costa County Dept. of Conservation and Development 1 Oct 2020.

⁴ April 28, 2020 Flare Event Causal Analysis; Tesoro Refining and Marketing Company, subsidiary of Marathon Petroleum, Martinez Refinery Plant #B2758; report dated 29 June, 2020 submitted by Marathon to the Bay Area Air Quality Management District: San Francisco, CA. https://www.baaqmd.gov/about-air-quality/research-and-data/flare-data/flare-causal-reports

⁵ Paramount Petroleum, AltAir Renewable Fuels Project Initial Study; submitted to City of Paramount Planning Division, 16400 Colorado Ave., Paramount, CA. Prepared by MRS Environmental, 1306 Santa Barbara St., Santa Barbara, CA.

⁶ Brelsford, R. Global Clean Energy lets contract for Bakersfield refinery conversion project. *Oil & Gas Journal.* **2020.** 9 Jan 2020.

⁷ Brelsford, R. Diamond Green Diesel to build new Port Arthur plant. *Oil & Gas J.* **2021.** 8 Feb 2021.

⁸ Sapp, M. Diamond Green Diesel to invest in \$1.1 billion expansion with UOP's EcofiningTM tech. *Biofuels Digest;* **2019.** 1 Oct 2019. <u>https://www.biofuelsdigest.com/bdigest/2019/10/01/diamond-green-</u> diesel-to-invest-in-1-1-billion-expansion-with-uops-ecofining-tech

⁹ Pearlson et al., 2013. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. *Biofuels, Bioprod. Bioref.* 7: 89–96. DOI: 10.1002/bbb, 1378.

¹⁰ Fallas, B. *Phillips 66 plans world's largest renewable fuels plant;* Phillips 66 Corporate Communications, Phillips 66 Company: Houston, TX. 12 Aug 2020. https://www.phillips66.com/newsroom/rodeo-renewed

¹¹ Application for Authority to Construct and Title V Operating Permit Amendment: Martinez Renewable Fuels Project; 30 Sep 2020. Prepared for Tesoro Refining & Marketing Co. LLC, an indirect, wholly-owned subsidiary of Marathon Petroleum Corp. (Facility #B2758 and #B2759). Ashworth Leininger Group. BARR. <u>See esp.</u> Appendix B, Table 52, and Data Form X.

¹² Tirado et al., 2018. Kinetic and Reactor Modeling of Catalytic Hydrotreatment of Vegetable Oils. *Energy & Fuels* 32: 7245–7261. DOI: 10.1021/acs.energyfuels.8b00947.

¹³ Satyarthi et al., 2013. An overview of catalytic conversion of vegetable oils/fats into middle distillates. *Catal. Sci. Technol* 3: 70. DOI: 10.1039/c2cy20415k. www.rsc.org/catalysis.

¹⁴ Maki-Arvela et al., 2018. Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. *Catalysts* 8: 534. DOI: 10.3390/catal8110534. www.mdpi.com/journal/catalysts.

¹⁵ Zhao et al., 2017. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Fuels. *Catalysts* 7: 83. DOI: 10.3390/catal7030083. www.mdpi.com/journal/catalysts.

¹⁶ Robinson and Dolbear, 2007. Commercial Hydrotreating and Hydrocracking. *In:* Hydroprocessing of heavy oils and residua. Ancheyta, J., and Speight, J., eds. CRC Press, Taylor & Francis Group: Boca Raton, FL. ISBN-13: 978-0-8493-7419-7.

¹⁷ Karatzos et al., 2014. *The Potential and Challenges of Drop-in Biofuels;* A Report by IEA Bioenergy Task 39. Report T39-T1 July 2014. International Energy Agency: Paris, FR. ISBN: 978-1-910154-07-6.

¹⁸ Douvartzides et al., 2019. Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. *Energies* 12: 809. DOI: 10.3390/en12050809. www.mdpi.com/journal/energies.

¹⁹ Regali et al., 2014. Hydroconversion of *n*-hexadecane on Pt/silica-alumina catalysts: Effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. *Applied Catalysis A: General* 469: 328–339. http://dx.doi.org/10.1016/j.apcata.2013.09.048.

²⁰ Parmar et al., 2014. Hydroisomerization of *n*-hexadecane over Bronsted acid site tailored Pt/ZSM-12. *J Porous Mater* DOI: 10.1007/s10934-014-9834-3.

²¹ van Dyk et al., 2019. Potential synergies of drop-in biofuel production with further co-processing at oil refineries. *Biofuels Bioproducts & Biorefining* 13: 760–775. DOI: 10.1002/bbb.1974.

²² Chan, E., 2020. *Converting a Petroleum Diesel Refinery for Renewable Diesel;* White Paper / Renewable Diesel. Burns McDonnell. www.burnsmcd.com.

²³ *Fischer-Tropsch Synthesis;* National Energy Technology Laboratory, U.S. Department of Energy: <u>https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/ftsynthesis</u>

²⁴ Wang et al., 2016. *Review of Biojet Fuel Conversion Technologies;* Technical Report NREL/TP-5100-66291. Contract No. DE-AC36-08GO28308. National Renewable Energy Laboratory: Golden, CO. www.nrel.gov/docs/fy16osti/66291.pdf.

²⁵ Major Facility Review Permit Issued To: Phillips 66–San Francisco Refinery, Facility #A0016; 27 Dec 2018. Title V Permit issued by the Bay Area Air Quality Management District: San Francisco, CA. <u>See</u> Contra Costa County, at: <u>https://www.baaqmd.gov/permits/major-facility-review-title-v/title-v-permits</u>

²⁶ Major Facility Review Permit Issued To: Tesoro Refining & Marketing Company LLC, Facility #B2758 & Facility #B2759; 11 Jan 2016. Title V Permit issued by the Bay Area Air Quality Management District: San Francisco, CA. <u>See</u> Contra Costa County, at: <u>https://www.baaqmd.gov/permits/major-facility-review-title-v/title-v-permits</u>

²⁷ *Major Facility Review Permit Issued To: Air Liquide Large Industries, US LP, Facility #B7419;* 10 Apr 2020. Title V Permit issued by the Bay Area Air Quality Management District: San Francisco, CA. <u>See</u> Contra Costa County, at: <u>https://www.baaqmd.gov/permits/major-facility-review-title-v/title-v-permits</u>

²⁸ Phillips 66 Rodeo Renewed Project-comments concerning scoping: File LP20-2040; 27 Jan 2021 technical comment to Gary Kupp, Senior Planner, Contra Costa County Department of Conservation and Development, by: Biofuelwatch, Community Energy reSource, Natural Resources Defense Council, Rodeo Citizens Association, San Francisco Baykeeper, Sierra Club San Francisco Bay Chapter, Sunflower Alliance, and 350 Contra Costa.

²⁹ September 6, 2019 correspondence from Carl Perkins, Refinery Manager, Phillips 66 San Francisco Refinery, to Jack Broadbent, Executive Officer, Bay Area Air Quality Management District. Bay Area Air Quality Management District: San Francisco, CA.

³⁰ Martinez refinery renewable fuels project (File No. CDLP20-02046)-comments concerning scoping; 22 Mar 2021 technical comment to Joseph L. Lawlor Jr., AICP, Project Planner, Contra Costa County Department of Conservation and Development, by: Biofuelwatch, Community Energy reSource, Interfaith Climate Action Network of Contra Costa County, Natural Resources Defense Council, Rodeo Citizens Association, San Francisco Baykeeper, Sierra Club San Francisco Bay Chapter, Stand.Earth, Sunflower Alliance, and 350 Contra Costa.

³¹ Tepperman, J. Refineries Renewed: Phillips 66, Marathon move to renewable fuels. East Bay Express, 16 Sep 2020. <u>https://eastbayexpress.com/refineries-renewed-1</u>

³² Krauss, C. Oil Refineries See Profit in Turning Kitchen Grease Into Diesel. New York Times, 3 Dec 2020. <u>https://www.nytimes.com/2020/12/03/business/energy-environment/oil-refineries-renewablediesel.html</u>

³³ S. _____ (Whitehouse) To support the sustainable aviation fuel market, and for other purposes; 117th CONGRESS, 1st Session. <u>https://www.whitehouse.senate.gov/download/sustainable-aviation-fuel-act</u>

³⁴ *Share of Liquid Biofuels Produced in State;* Figure 10 *in* Low Carbon Fuel Standard Data Dashboard. California Air Resources Board: Sacramento, CA.

https://ww3.arb.ca.gov/fuels/lcfs/dashboard/dashboard.htm

³⁵ Weekly Fuels Watch Report, Historic Information; California Energy Commission: Sacramento, CA. https://ww2.energy.ca.gov/almanac/petroleum_data/fuels_watch/index_cms.html

³⁶ Karras, 2021b. *COVID and Oil;* Community Energy reSource; <u>www.energy-re-source.com/covid-and-oil</u>.

³⁷ *Monthly Biodiesel Production Report, Table 3;* U.S. Energy Information Administration: Washington, D.C. <u>http://www.eia.gov/biofuels/biodiesel/production/table3.xls</u>.

³⁸ U.S. Department of Agriculture *Oil Crops Data: Yearbook Tables;* <u>https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-yearbook/#All%20Tables.xlsx?v=7477.4</u>.

³⁹ Crops and Residues used in Biomass-based Diesel Production; Figure 6 in Low Carbon Fuel Standard Data Dashboard. California Air Resources Board: Sacramento, CA. https://ww3.arb.ca.gov/fuels/lcfs/dashboard/dashboard.htm

⁴⁰ Perlack and Stokes, 2011. U.S. Billion-Ton Update: Biomass Supply for Bioenergy and Bioproducts Industry. U.S. Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN. ORNL/TM-2011/224.

⁴¹ Nickle et al., 2021. Renewable diesel boom highlights challenges in clean-energy transition. 3 Mar 2021. *Reuters*. <u>https://www.reuters.com/article/us-global-oil-biofuels-insight-idUSKBN2AV1BS</u>

⁴² Walljasper, 2021. GRAINS–Soybeans extend gains for fourth session on veg oil rally; corn mixed. 24 Mar 2021. *Reuters*. <u>https://www.reuters.com/article/global-grains-idUSL1N2LM2O8</u>

⁴³ Kelly, 2021. U.S. renewable fuels market could face feedstock deficit. 8 Apr 2021. *Reuters*. <u>https://www.reuters.com/article/us-usa-energy-feedstocks-graphic/us-renewable-fuels-market-could-face-feedstock-deficit-idUSKBN2BW0EO</u>

⁴⁴ Searchinger et al., 2008. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change. *Science* 319 (5867): 1238-1240. DOI: 10.1126/Science.1151861. https://science.sciencemag.org/content/319/5867/1238

⁴⁵ Sanders et al., 2012. *Revisiting the Palm Oil Boom in Southeast Asia;* International Food Policy Research Institute; <u>www.ifpri.org/publication/revisiting-palm-oil-boom-southeast-asia-role-fuel-versus-food-demand-drivers.</u>

⁴⁶ Santeramo, F., 2017. *Cross-Price Elasticities for Oils and Fats in the US and the EU;* The International Council on Clean Transportation: Beijing, Berlin, Brussels, San Francisco and Washington, D.C. (The ICCT); <u>www.theicct.org/sites/default/files/publications/Cross-price-elasticities-for-oils-fats-US-EU_ICCT_consultant-report_06032017.pdf</u>

⁴⁷ Searle, 2017. *How rapeseed and soy biodiesel drive oil palm expansion;* Briefing. The International Council on Clean Transportation: Beijing, Berlin, Brussels, San Francisco and Washington, D.C. (The ICCT); <u>https://theicct.org/publications/how-rapeseed-and-soy-biodiesel-drive-oil-palm-expansion</u>

⁴⁸ Union of Concerned Scientists USA, 2015. *Soybeans;* <u>www.ucsusa.org/resources/soybeans</u>

⁴⁹ Lenfert et al., 2017. *ZEF Policy Brief No. 28;* Center for Development Research, University of Bonn; www.zef.de/fileadmin/user_upload/Policy_brief_28_en.pdf

⁵⁰ Nepstad, D., and Shimada, J., 2018. *Soybeans in the Brazilian Amazon and the Case Study of the Brazilian Soy Moratorium;* International Bank for Reconstruction and Development / The World Bank: Washington, D.C. www.profor.info/sites/profor.info/files/Soybeans%20Case%20Study LEAVES

<u>2018.pdf</u>

⁵¹ Takriti et al., 2017. *Mitigating International Aviation Emissions: Risks and opportunities for alternative jet fuels;* The ICCT; <u>https://theicct.org/publications/mitigating-international-aviation-emissions-risks-and-opportunities-alternative-jet</u>

⁵² Diaz et al., 2019. *Global Assessment Report on Biodiversity and Ecosystem Services;* Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPDES): Bonn, DE. <u>https://ipbes.net/global-assessment</u>

⁵³ Portner et al., 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. IPBES and IPCC. DOI: 10.5281/zenodo.4782538. <u>https://www.ipbes.net/events/launch-ipbes-ipcc-co-sponsored-workshop-report-biodiversity-and-climate-change</u>

⁵⁴ Mahone et al., 2018. *Deep Decarbonization in a High Renewables Future: Updated results from the California PATHWAYS Model;* Report CEC-500-2018-012. Contract No. EPC-14-069. Prepared for California Energy Commission. Final Project Report. Energy and Environmental Economics, Inc.: San Francisco, CA. <u>https://ww2.energy.ca.gov/2018publications/CEC-500-2018-012/CEC-500-2018-012.pdf</u>

⁵⁵ Mahone et al., 2020a. Achieving Carbon Neutrality in California: PATHWAYS Scenarios Developed for the California Air Resources Board, DRAFT: August 2020; Energy and Environmental Economics, Inc.: San Francisco, CA. <u>https://ww2.arb.ca.gov/sites/default/files/2020-</u> 08/e3 cn draft report aug2020.pdf

⁵⁶ Mahone et al., 2020b. *Hydrogen Opportunities in a Low-Carbon Future: An Assessment of Long-Term Market Potential in the Western United States;* Energy and Environmental Economics, Inc.: San Francisco, CA. Report prepared for ACES, a joint development project between Mitsubishi Hitachi Power Systems Americas, Inc. and Magnum Development, LLC. Submitted to the California Public Utilities Commission June 2020. <u>https://www.ethree.com/?s=hydrogen+opportunities+in+a+low-carbon+future</u>

⁵⁷ Austin et al., 2021. *Driving California's Transportation Emissions to Zero;* Report No.: UC-ITS-2020-65. Institute of Transportation Studies, University of California. DOI: 10.7922/G2MC8X9X. <u>https://escholarship.org/uc/item/3np3p2t0</u>

⁵⁸ Reed et al., 2020. *Roadmap for the Deployment and Buildout of Renewable Hydrogen Production Plants in California;* Final Project Report CEC-600-2020-002. Prepared for the California Energy Commission by U.C. Irvine Advanced Power and Energy Program. Clean Transportation Program, California Energy Commission: Sacramento, CA.

https://efiling.energy.ca.gov/getdocument.aspx?tn=233292

⁵⁹ Williams et al., 2012. The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity. *Science* 53–59. <u>https://doi.org/DOI: 10.1126/science.1208365</u>

⁶⁰ Williams et al., 2015. *Pathways to Deep Decarbonization in the United States;* The U.S. report of the Deep Decarbonization Pathways Project of the Sustainable Development Solutions Network and the Institute of Sustainable Development and International Relations. Revision with technical supp. Energy and Environmental Economics, Inc., in collaboration with Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory. <u>https://usddpp.org/downloads/2014-technical-report.pdf</u>

⁶¹ Williams et al., 2021. Carbon-Neutral Pathways for the United States. *AGU Advances* 2, e2020AV000284. <u>https://doi.org/10.1029/2020AV000284</u>

⁶² California Health and Safety Code §§ 38505 (j) and 38562 (b) (8).

⁶³ Karras, 2021a. *Biofuels: Burning food?* Originally published as follow up to discussions of questions raised by directors of the Bay Area Air Quality Management District at its 16 September 2020 Board of Directors meeting. Community Energy reSource; <u>https://www.energy-re-source.com/latest.</u>

⁶⁴ Karras, 2010. Combustion Emissions from Refining Lower Quality Oil: What Is the Global Warming Potential? *Environ. Sci. Technol.* 44(24): 9584–9589. <u>See esp.</u> Supporting Information, Table S1. https://pubs.acs.org/doi/10.1021/es1019965

⁶⁵ Seber et al., 2013. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. *Biomass & Bioenergy* 67: 108–118. http://dx.doi.org/10.1016/j.biombioe.2014.04.024

⁶⁶ Karras, 2020. *Decommissioning California Refineries: Climate and Health Paths in an Oil State;* Communities for a Better Environment: Huntington Park, Oakland, Richmond, and Wilmington, CA. Available at <u>www.energy-re-source.com</u>. <u>See esp.</u> Supp. Material Table S23, p. S54, Source ID# 437.

⁶⁷ Permit Application 28789. Submitted to the Bay Area Air Quality Management District, San Francisco, CA, 9 Sep 1982 by Tosco Corp. <u>See</u> esp. Form G for Source S-1005 as submitted by M. M. De Leon, Tosco Corp., on 12 Nov 1982.

⁶⁸ Sun et al., 2019. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. *Environ. Sci. Technol.* 53: 7103–7113. https://pubs.acs.org/doi/10.1021/acs.est.8b06197

⁶⁹ Guha et al., 2020. Assessment of Regional Methane Emission Inventories through Airborne Quantification in the San Francisco Bay Area. *Environ. Sci. Technol.* 54: 9254–9264. https://pubs.acs.org/doi/10.1021/acs.est.0c01212

⁷⁰ CSB, 2013. *Interim Investigation Report, Chevron Richmond Refinery Fire;* U.S. Chemical Safety Board: Washington, D.C. <u>https://www.csb.gov/file.aspx?Documentid=5913</u>

⁷¹ API, 2009. *Guidelines for Avoiding Sulfidation (Sulfidic) Corrosion Failures in Oil Refineries;* API Recommended Practice 939–C, First Edition. American Petroleum Institute (API): Washington, D.C.

⁷² Process Safety Integrity *Refining Incidents;* accessed Feb–Mar 2021; available for download at: <u>https://processsafetyintegrity.com/incidents/industry/refining</u>. <u>See</u> the following incidents as dated in the report text: 2018 incident: Bayernoil Refinery Explosion, January 2018; 2017 incidents: Syncrude Fort McMurray Refinery Fire, March 2017 and Sir Refinery Fire, January 2017; 2015 incident: Petrobras (RLAM) Explosion, January 2015; 2005 incident: BP Texas City Refinery Explosion, March 2005; 1999 incident: Chevron (Richmond) Refinery Explosion, March 1999; 1997 incident: Tosco Avon (Hydrocracker) Explosion, January 1997; 1992 incident: Carson Refinery Explosion, October 1992; 1989 incident: Chevron (Richmond) Refinery Fire, April 1989; 1987 incident: BP (Grangemouth) Hydrocracker Explosion, March 1987.

⁷³ Karras and Hernandez, 2005. *Flaring Hot Spots: Assessment of episodic local air pollution associated with oil refinery flaring using sulfur as a tracer;* Communities for a Better Environment: Oakland and Huntington Park, CA.

⁷⁴ Ezersky, 2006. *Staff Report: Proposed Amendments to Regulation 12, Miscellaneous Standards of Performance, Rule 12, Flares at Petroleum Refineries;* 3 March 2006. Planning and Research Division, Bay Area Air Quality Management District: San Francisco, CA. *See esp.* pp. 5–8, 13, 14.

⁷⁵ BAAQMD Regulations, § 12-12-406. Bay Area Air Quality Management District: San Francisco, CA. <u>See</u> Regulation 12, Rule 12, at: <u>https://www.baaqmd.gov/rules-and-compliance/current-rules</u>

⁷⁶ Pastor et al., 2010. *Minding the Climate Gap: What's at Stake if California's Climate Law Isn't Done Right and Right Away;* College of Natural Resources, Department of Environmental Science, Policy and

Management, University of California, Berkeley: Berkely, CA; and Program for Environmental and Regional Equity, University of Southern California: Los Angeles, CA. <u>https://dornsife.usc.edu/pere/mindingclimategap</u>

⁷⁷ California Greenhouse Gas Emissions for 2000 to 2018: Trends of Emissions and Other Indicators. 2020 Edition, California Greenhouse Gas Emissions Inventory: 2000–2018; California Air Resources Board. https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000_2018/ghg_inventory_trends_00-18.pdf

⁷⁸ Executive Order N-79-20. Executive Department, State of California, Gavin Newsom, Governor, State of California; <u>https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf</u>

⁷⁹ Executive Order B-55-18 to Achieve Carbon Neutrality; Edmund G. Brown, Governor of California. 10 Sep 2018.

⁸⁰ *Fischer-Tropsch Synthesis;* National Energy Technology Laboratory, U.S. Department of Energy: <u>https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/ftsynthesis</u>

⁸¹ Wang et al., 2016. *Review of Biojet Fuel Conversion Technologies;* Technical Report NREL/TP-5100-66291. Contract No. DE-AC36-08GO28308. National Renewable Energy Laboratory: Golden, CO. www.nrel.gov/docs/fy16osti/66291.pdf.

⁸² IRENA, 2020. *Reaching zero with renewables: Eliminating CO₂ emissions from industry and transport in line with the 1.5°C climate goal;* International Renewable Energy Agency: Abu Dhabi. ISBN 978-92-9260-269-7. Available at: <u>https://www.irena.org/publications/2020/Sep/Reaching-Zero-with-Renewables</u>

⁸³ Alternative Fuels Volumes and Credits; Figure 2 in Low Carbon Fuel Standard Data Dashboard. California Air Resources Board: Sacramento, CA. https://ww3.arb.ca.gov/fuels/lcfs/dashboard/dashboard.htm

⁸⁴ *Renewables Watch;* Hourly data for 20 Apr 2021. California Independent System Operator: Folsom, CA. <u>http://content.caiso.com/green/renewrpt/20210420_DailyRenewablesWatch.txt</u>

⁸⁵ Ueckerdt et al., 2021. Potential and risks of hydrogen-based e-fuels in climate change mitigation. *Nature Climate Change* <u>https://doi.org/10.1038/s41558-021-01032-7</u> Includes Supplementary Information.

⁸⁶ Low Carbon Fuel Standard (LCFS) Regulation; California Air Resources Board: Sacramento, CA. <u>https://ww2.arb.ca.gov/our-work/programs/low-carbon-fuel-standard</u>

⁸⁷ Zhao et al., 1999. Air Quality and Health Cobenefits of Different Deep Decarbonization Pathways. *Environ. Sci. Technol.* 53: 7163–7171. <u>https://pubs.acs.org/doi/10.1021/acs.est.9b02385</u>

⁸⁸ *Refinery Capacity Data by Individual Refinery as of January 1, 2020;* U.S. Energy Information Administration: Washington, D.C. <u>https://www.eia.gov/petroleum/refinerycapacity</u>

⁸⁹ Palmer et al., 2018. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. *Applied Energy* 209: 108–119.

https://www.sciencedirect.com/science/article/abs/pii/S030626191731526X

⁹⁰ *EER Values for Fuels Used in Light- and Medium Duty, and Heavy-Duty Applications;* Table 4, Low Carbon Fuel Standard Regulation Order. 2015. California Air Resources Board: Sacramento, CA.

⁹¹ Fuel Watch; California Energy Commission: Sacramento, CA.

https://ww2.energy.ca.gov/almanac/petroleum_data/fuels_watch/index_cms.html

⁹² Schremp (2020). Transportation Fuels Trends, Jet Fuel Overview, Fuel Market Changes & Potential Refinery Closure Impacts. BAAQMD Board of Directors Special Meeting, May 5 2021, G. Schremp, Energy Assessments Division, California Energy Commission. *In* Board Agenda Presentations Package; <u>https://www.baaqmd.gov/-/media/files/board-of-directors/2021/bods_presentations_050521_revised_op-pdf.pdf?la=en</u>

⁹³ Seto et al., 2016. Carbon lock-in: Types, causes, and policy implications. *Annual Review of Environment and Resources* 41: 425–452. <u>https://www.annualreviews.org/doi/abs/10.1146/annurev-environ-110615-085934</u>

⁹⁴ Pollin et al., 2021. A Program for Economic Recovery and Clean Energy Transition in California; Department of Economics and Political Economy Research Institute (PERI), University of Massachusetts–Amherst. Commissioned by the American Federation of State, County and Municipal Employees Local 3299, the California Federation of Teachers, and the United Steelworkers Local 675. <u>https://peri.umass.edu/publication/item/1466-a-program-for-economic-recovery-and-clean-energy-transition-in-california</u>

APPENDIX B

Karras, G., Unsustainable Aviation Fuel (Karras, 2021b)

An assessment of carbon emission and sink impacts from biorefining and feedstock choices for producing jet biofuel in repurposed crude refineries

A Natural Resources Defense Council (NRDC) Report

Prepared for the NRDC by Greg Karras, G. Karras Consulting <u>www.energy-re-source.com</u>

August 2021

CONTENTS

	Executive summary, findings and takeaways	page 3	
1.	How would refiners rebuild for HEFA jet fuel production?	7	
2.	Can refiners make more HEFA jet fuel from some feedstocks than from others?	10	
3.	Does switching from one HEFA feedstock to another change processing carbon intensity differently when refiners target jet fuel instead of diesel production?	16	
4.	HEFA jet fuel feedstock and carbon sinks: Could the feedstocks that maximize HEFA jet fuel instead of diesel have comparatively high indirect climate impacts?	23	
5.	Limitations and suggestions for future work	33	
	Data and methods table for feed-specific estimates	37	
	Literature cited	44	

Executive Summary

Current climate, energy and aviation policy use the term Sustainable Aviation Fuel (SAF) to mean alternatives to petroleum aviation fuel which could include seven types of biofuels and can replace up to half of petroleum jet fuel under existing aviation fuel blending limits. In practice this definition of SAF favors continued use of existing combustion fuel infrastructure to burn a mix of biofuel and petroleum. That is not a net-zero carbon climate solution in itself, and in this sense, SAF is not sustainable. Rather, the partial replacement of petroleum jet fuel with biofuel is meant to incrementally reduce emissions from the hard-to-decarbonize aviation sector and, in concert with more effective measures in other sectors, help to achieve climate stabilization goals.

A question, then, is whether the type of biofuel favored by the existing combustion fuel infrastructure will, in fact, emit less carbon than petroleum. This, the evidence suggests, is a key question for the sustainability of SAF.

Although it is but one proven technology for the production of SAF, Hydrotreated Esters and Fatty Acids (HEFA) technology is the fastest-growing type of biofuel in the U.S. today. This rapid recent and projected growth is being driven by more than renewable fuels incentives. The crucially unique and powerful driver of HEFA biofuel growth is that oil companies can protect troubled and climate-stranded assets by repurposing petroleum crude refinery hydroconversion and hydrogen plants for HEFA jet fuel and diesel biofuels production.

Some HEFA biofuels are reported to emit more carbon per gallon than petroleum fuels. This is in part because HEFA technology depends upon and competes for limited agricultural or fishery yields of certain types—oil crops, livestock fats or fish oils—for its biomass feedstocks. Meeting increased demands for at least some of those feedstocks has degraded natural carbon sinks, causing indirect carbon emissions associated with those biofuels. And it is in part because HEFA feedstocks require substantial hydrogen inputs for HEFA processing, resulting in very substantial direct carbon emissions from fossil fuel hydrogen production repurposed for HEFA biorefining. Both processing strategies, i.e., refining configurations to target jet fuel *v*. diesel

production, and feedstock choices, e.g., choosing to process palm oil *v*. livestock fat feeds, are known factors in these direct and indirect emissions. That is important because HEFA jet fuel yield is limited, and refiners can use various combinations of feeds and processing strategies to boost jet yield with repurposed crude refining equipment. To date, however, the combined effect of these factors in strategies to boost HEFA jet fuel yield has received insufficient attention.

This report focuses on two questions about climate impacts associated with HEFA jet fuel production in repurposed crude refineries. First, could feedstocks that enable refiners to boost jet fuel yield increase the carbon dioxide emission per barrel—the carbon intensity—of HEFA refining relative to the feeds and processing strategy refiners use to target HEFA diesel yield? Second, could the acquisition of feedstocks that refiners can use to increase HEFA jet fuel yield result in comparatively more serious indirect climate impacts?

The scope of the report is limited to these two questions. Its analysis and findings are based on publicly reported data referenced herein. Data and analysis methods supporting feed-specific original research are given and sourced in an attached data and methods table.¹ Data limitations are discussed in the final chapter. This work builds on recent NRDC-sponsored research² which is summarized in relevant part as context above, and as referenced in following chapters.

Chapter 1 provides an overview of HEFA technology, including the essential processing steps for HEFA jet fuel production and additional options for maximizing jet fuel yield using repurposed crude refining assets. This process analysis shows that a growing fleet of HEFA refineries could, and likely would, use a combination of strategies in which the use of intentional hydrocracking (IHC) could vary widely. HEFA refiners could produce HEFA jet fuel without intentional hydrocracking (No-IHC), produce more HEFA jet fuel with IHC in the isomerization step needed for all HEFA fuels (Isom-IHC), or produce more HEFA jet fuel while shaving the increased hydrogen costs of intentional hydrocracking (Selective-IHC). The strategies chosen would be influenced by the capabilities of crude refineries repurposed for HEFA processing.

Chapter 2 reviews HEFA feedstock limitations and supply options, presents detailed data relating feedstock properties to effects on HEFA jet fuel yields and process hydrogen demand, and ranks individual feedstocks for their ability to increase HEFA jet fuel yield. Differences in chemistry among feeds result in different feed rankings for jet fuel *versus* diesel yields, different feed rankings for increased jet fuel yield among processing strategies, and different feed rankings for hydrogen demand among processing strategies. Palm oil, livestock fats, and fish oils boost jet fuel yield without intentional hydrocracking, and enable more refiners to further boost jet yield with intentional hydrocracking, which increases HEFA process hydrogen demand.

Chapter 3 describes and quantifies refining strategy-specific and feed-specific carbon dioxide (CO₂) emissions from the repurposed crude refinery steam reformers that produce hydrogen for HEFA processing. Feed-specific carbon intensity (CI) rankings for jet fuel-range feed fractions mask those for whole feed actual CI when refiners use the No-IHC process strategy. Refining CI rankings for some feeds with low *v*. high jet yields (e.g., soybean oil *v*.

menhaden fish oil) are reversed in the Selective-IHC strategy compared with the other strategies for increasing HEFA jet fuel yield. Some feeds that increase jet fuel yield have relatively higher process CI (fish oils) while others have relatively lower process CI (palm oil and livestock fats). However, palm oil and livestock fat feeds also enable the highest-CI refining strategies, and all strategies for HEFA jet fuel production result in substantially higher refining CI than the average U.S. petroleum refinery CI. This shows that HEFA jet fuel growth would increase the carbon intensity of hydrocarbon fuels processing.

Chapter 4 reviews natural carbon sinks and assesses potential carbon emission impacts from increasing production of the specific food system resources HEFA refiners can use as feedstocks. Palm oil, livestock, and fisheries production emit from these carbon sinks. Present assessments confirm this "indirect" impact of palm oil biofuels, but suggest livestock fat and fish oil biofuels have relatively low feed production emissions due to the assumption that biofuel demand will not expand livestock production or fisheries catch. Some also assume U.S. policies that discourage palm oil biofuels prevent palm oil expansion to fill in for other uses of biomass biofuels displace. Those assumptions, however, are based on historical data, when biofuels demand was far below total production for the type of biomass HEFA refiners can process. HEFA feedstock demand could far exceed total current U.S. production for all uses of that biomass type—including food and fuel—if HEFA jet fuel replaces as little as 18 percent of current U.S. jet fuel consumption.

With HEFA jet fuel growth to replace 18 percent of U.S. jet fuel, world livestock fat and fish oil production could supply only a fraction of U.S. HEFA feedstock demand unless that demand boosts their production, with consequent indirect carbon impacts. Palm oil production could expand to fill other uses for livestock fat and other plant oils which the increased U.S. biofuel demand would displace. Intensified and expanded production of soybean and other oil crops with relatively high indirect carbon impacts would likely be necessary, in addition, to supply the total demand for both food and fuel. Further, given refiner incentives to repurpose climate-stranded crude refining assets, plausible U.S. HEFA growth scenarios by mid-century range above 18 percent and up to 39 percent of U.S. jet fuel replacement with HEFA jet fuel.

Thus, data and analysis in Chapter 4 suggest the potential for significant indirect carbon emission impacts associated with the mix of HEFA jet fuel feedstocks that could meet plausible future SAF demand, and that high-jet yield feeds could contribute to or worsen these impacts.

Crucially, causal factors for these impacts would be inherent and mutually reinforcing. HEFA technology repurposed from crude refineries can process only feedstocks that are coproduced from food resources, it requires large hydrogen inputs that boost refining emissions to marginally improve its low jet fuel yield, and even then, it could require more than two tons of carbon-emitting feedstock production per ton of HEFA jet fuel produced.

Findings and takeaways from this work follow below.

Findings and Takeaways

Finding 1.	Hydrotreated Esters and Fatty Acids (HEFA) biofuel technology has inherent limitations that affect its potential as a sustainable aviation fuel: low jet fuel yield on feedstock, high hydrogen demand, and limited sustainable feedstock supply.
Takeaway	Climate-safe plans and policies will need to prioritize alternatives to petroleum jet fuel combustion which do not have known sustainability limitations.
Finding 2.	Switching HEFA feedstocks to target increased jet fuel yield could increase the carbon intensity—CO ₂ emitted per barrel feed—of HEFA refining, compared with targeting HEFA diesel yield. HEFA refining carbon intensity could increase in 80 percent of plausible feed switch and processing combinations targeting jet fuel. Direct emission impacts could be significant given that the carbon intensity of HEFA refining substantially exceeds that of U.S. petroleum refining.
Takeaway	Environmental impact assessments of proposed HEFA projects will need to address potential emissions from future use of HEFA refineries to maximize jet fuel production, and assess lower emitting alternatives to repurposing existing high-carbon refinery hydrogen plants.
Finding 3.	One of three feeds that could boost HEFA jet fuel yield causes carbon emissions from deforestation for palm plantations, and the other two cannot meet potential HEFA feedstock demand without risking new carbon emissions from expanded livestock production or fisheries depletion. These indirect impacts could be significant given that feedstock demand for replacing only a small fraction of current U.S. jet fuel with HEFA jet fuel would exceed total U.S. production of HEFA feedstocks biomass—biomass which now is used primarily for food.
Takeaway	Before properly considering approvals of proposed HEFA projects, permitting authorities will need to assess potential limits on the use of feedstocks which could result in significant climate impacts.
Finding 4.	Natural limits on total supply for the type of feedstock that HEFA technology can process appear to make replacing any significant portion of current petroleum jet fuel with this type of biofuel unsustainable.
Takeaway	Sustainable aviation plans will need to consider proactive and preventive limits on HEFA jet fuel, in concert with actions to accelerate development and deployment of sustainable, climate-safe alternatives.

1. How would refiners rebuild for HEFA jet fuel production?

Oil companies can repurpose existing fossil fuel hydrogen plants, hydrocrackers, and hydrotreaters at their petroleum refineries to produce jet fuel and diesel biofuels using a technology called hydrotreating esters and fatty acids (HEFA). "Hydrotreating" means a hydro-conversion process: the HEFA process reacts biomass with hydrogen over a catalyst at high temperatures and pressures to form hydrocarbons and water. "Esters and fatty acids" are the type of biomass this hydro-conversion can process: the triacylglycerols and fatty acids in plant oils, animal fats, fish oils, used cooking oils, or combinations of these biomass lipids.¹

HEFA processing requires a sequence of steps, performed in separate hydro-conversion reactors, to deoxygenate and isomerize (restructure) the lipids feedstock, and very substantial hydrogen inputs for those process steps, in order to produce diesel and jet fuels.²

One problem with using HEFA technology for Sustainable Aviation Fuel (SAF) is that these hydrodeoxygenation and isomerization steps alone can convert only a fraction of its feedstock into jet fuel—as little as 0.128 pounds of jet fuel per pound of soybean oil feed.³ Intentional hydrocracking can boost HEFA jet fuel yield to approximately 0.494 pounds per pound of feed,³ however, that requires even more hydrogen, and can require costly additional refining capacity. This chapter describes the range of processing strategies that refiners could use to increase HEFA jet fuel yields from their repurposed crude refineries.

1.1 Step 1: Hydrodeoxygenation (HDO) of jet fuel (and diesel) hydrocarbons

HEFA processing produces diesel and jet fuels from the hydrocarbon chains of fatty acids. In all HEFA feedstocks, fatty acids are bound in triacylglycerols that contain substantial oxygen, and various numbers of carbon double bonds. To free the fatty acids and make fuels that can burn like petroleum diesel and jet fuel from them, that oxygen must be removed from the whole feed. This first essential step in HEFA processing is called hydrodeoxygenation (HDO).

HDO reaction chemistry is complex, as reviewed in more detail elsewhere,² and its intended reactions all consume hydrogen by forcing it into the feedstock molecules. Process reactions insert hydrogen to free fatty acids from triacylglycerols ("depropanation") and to remove oxygen by bonding it with hydrogen to form water ("deoxygenation"). And along with those reactions, still more hydrogen bonds with the carbon chains to "saturate" the carbon double bonds in them. These reactions proceed at high temperatures and pressures in the presence of a catalyst to yield the intended HDO products: deoxygenated hydrocarbon chains which can be further processed to make diesel and jet fuels.

1.2 Step 2: Isomerization of jet fuel and diesel hydrocarbons

Isomerization restructures the saturated straight-chain hydrocarbons produced by HDO, which are too waxy to burn well or safely in diesel or jet engines, by turning these straight-chain hydrocarbons into their branched-chain isomers. This is the second essential HEFA process step.

Like HDO, isomerization reactions are complex, proceed at high temperatures and pressures in the presence of a catalyst, and require substantial hydrogen inputs.² However, isomerization process reactions, conditions, and catalysts differ substantially from those of HDO and, instead of consuming the hydrogen input as in HDO, most of the hydrogen needed for isomerization can be recaptured and recycled.² These differences have so far required a separate isomerization processing step, performed in a separate process reactor, to make HEFA diesel and jet fuel.

1.3 Additional option of intentional hydrocracking (IHC)

Hydrocracking breaks ("cracks") carbon bonds by forcing hydrogen between bonded carbon atoms at high temperature and pressure. This cracks larger hydrocarbons into smaller ones. It is an unwanted side reaction in HDO and some isomerization processing since when uncontrolled, it can produce compounds too small to sell as either diesel or jet fuel. *Intentional* hydrocracking (IHC) uses specialized catalysts and process conditions different from those required by HDO to crack HDO outputs into hydrocarbons in the jet fuel range.

Thus, while HEFA refiners can make jet fuel with HDO and isomerization alone (No-IHC), they could make more jet fuel by adding IHC to their processing strategy. Adding IHC for the HDO output can boost jet fuel yield to approximately 49.4 percent of HEFA feedstock mass (49.4 wt.%).³ This boost is important, compared with No-IHC jet fuel yield of approximately 12.8 wt.% on soybean oil,³ the most abundant HEFA feedstock produced in the U.S.² However, hydrocrackers are expensive to build for refineries that do not already have them,⁴ and IHC increases demand for hydrogen plant production capacity by approximately 1.3 wt.% on feed (800 cubic feet of H₂/barrel).^{2 3} New capacity for additional hydrogen production is also costly to refiners that cannot repurpose existing capacity. HEFA refiners that choose the IHC option to maximize jet fuel yield might choose one processing strategy to minimize new hydrocracking capacity cost, or another processing strategy to minimize new hydrogen capacity cost.

1.3.1 IHC in isomerization process units

Hydrocracking and isomerization can be accomplished in a repurposed crude refinery hydrocracker, given the necessary retooling and catalyst for HEFA HDO output processing.² Thus, a crude refinery with sufficient existing hydrocracking and hydrogen capacity for the whole HEFA feed stream it plans to process could repurpose that equipment for IHC in the isomerization step of its repurposed HEFA process configuration. This "Isom-IHC" processing strategy would allow that refiner to maximize HEFA jet fuel yield without the capital expense of building a new hydrocracker. However, combining intentional hydrocracking in isomerization, which is required for all HEFA fuels, cracks the entire output from the HDO step, incurring the 800 cubic feet of hydrogen per barrel cost increment on the entire HEFA feed. If a refiner lacks the existing hydrogen capacity, Isom-IHC could entail building new hydrogen plant capacity.

1.3.2 Selective IHC in separate hydrocracking process units

HEFA refiners separate the components of their HDO and isomerization outputs to re-run portions of the feed through those processes and to sell HEFA diesel and jet fuel as separate products. That distillation, or "fractionation," capacity could be used to separate the jet fuel produced by HDO and isomerization processing from their hydrocarbons output, and feed only those hydrocarbons outside the jet fuel range to a separate intentional hydrocracking unit. This "Selective-IHC" processing strategy could increase jet fuel yield while reducing IHC hydrogen consumption, and new hydrogen plant costs, compared with those of the Isom-IHC strategy. However, it would not eliminate the hydrogen production cost of IHC, and more importantly for refiners that lack the existing hydrocracking capacity before repurposing their crude refineries, it would entail building expensive new hydrocrackers.

1.4 Three potential HEFA jet fuel processing strategies

HEFA feedstock supply limitations,² differences in hydrogen production and hydrocracking capacities among U.S. refineries,⁵ and the differences between processing strategies described above suggest the broad outlines of a prospective future HEFA jet fuel refining fleet. Refiners that can repurpose sufficient capacity could maximize HEFA jet fuel yield using IHC strategies. The fleet-wide mix would be influenced initially by whether existing hydrocracking or hydrogen production capacity would limit total production by each refinery to be repurposed. Later, the relative costs of hydrogen production *v*. hydrocracking could affect the mix of Selective-IHC *v*. Isom-IHC in the mid-century HEFA refining fleet.

Refiners that lack sufficient capacity for IHC could repurpose for the No-IHC strategy and coproduce HEFA jet fuel along with larger volumes of HEFA diesel. Then, increasing costs of the much higher feed volume needed per gallon of HEFA jet fuel yield from the No-IHC strategy could limit this strategy to a small portion of the refining fleet by mid-century. Declining HEFA diesel demand, as electric and fuel cell vehicles replace diesel vehicles, could further drive this this limitation of the No-IHC processing strategy. However, refiners that do not use intentional hydrocracking could seek to boost HEFA jet fuel yield in another way.

2. Can refiners make more HEFA jet fuel from some feedstocks than from others?

HEFA biofuel technology is limited to a particular subset of world biomass supply for its feedstock. Despite that limitation, however, differences among these lipid feeds could affect both HEFA processing and jet fuel yield. This chapter assesses individual HEFA feedstocks for potential differences in HEFA processing and HEFA jet fuel yield.

Results reveal strong interactions between feedstock and processing configuration choices. In essential HEFA process steps, feed choices affect jet fuel yield and hydrogen demand, both of which affect options to further boost jet yield with intentional hydrocracking. Both feedstock and processing choices can increase hydrogen demand, which can affect processing to boost jet fuel yield where hydrogen supply is limited. Feed-driven and process strategy-driven impacts on hydrogen demand overlap, however, feed rankings for hydrogen differ from those for jet yield, and differ among processing configurations. From the lowest to highest impact combinations of feedstock and processing options, jet fuel yield and hydrogen demand increase dramatically.

Palm oil, livestock fat, and fish oil have relatively high jet fuel yields without intentional hydrocracking, and relatively high potentials to enable further boosting jet fuel yields with intentional hydrocracking (IHC).

2.1 HEFA feedstock limitations and supply options

HEFA biofuel technology relies on the fatty acids of triacylglycerols in biomass lipids for its feedstocks, as described in Chapter 1. Sources of these in relevant concentrations and quantities are limited to farmed or fished food system lipids resources. Among its other problems, which are addressed in a subsequent chapter, this technological inflexibility limits feedstock choices for refiners seeking to increase HEFA jet fuel yield.

Historically used lipid biofuel feedstock supplies include palm oil, soybean oil, distillers corn oil, canola (rapeseed) oil, and cottonseed oil among the significant HEFA oil crop feeds; livestock fats, including beef tallow, pork lard, and poultry fats; and fish oils—for which we

analyze data on anchovy, herring, menhaden, salmon, and tuna oils.¹ Additionally, though it is a secondary product from various mixtures of these primary lipid sources, and its supply is too limited to meet more than a small fraction of current HEFA demand,² we include used cooking oil (UCO) in our analysis.¹

2.2 Feedstock properties that affect HEFA jet fuel production

2.2.1 Feedstock carbon chain length

Jet fuel is a mixture of hydrocarbons that are predominantly in the range of eight to sixteen carbon atoms per molecule. In fuel chemistry shorthand, a hydrocarbon with 8 carbons is "C8" and one with 16 carbons is "C16," so the jet fuel range is C8–C16. Similarly, a fatty acid chain with 16 carbons is a C16 fatty acid. Thus, since fuels produced by the essential HEFA process steps—hydrodeoxygenation (HDO) and isomerization—reflect the chain lengths of fatty acids in the feed,² the ideal HEFA jet fuel feed would be comprised of C8–C16 fatty acids. But there is no such HEFA feedstock.

In fact, the majority of fatty acids in HEFA lipids feeds, some 53% to 95% depending on the feed, have chain lengths outside the jet fuel range.¹ This explains the low jet fuel yield problem with relying on HEFA technology for Sustainable Aviation Fuel (SAF) described in Chapter 1. However, that 53–95% variability among feeds also reveals that refiners could make more HEFA jet fuel from some HEFA feedstocks than from others.

2.2.2 Feedstock-driven process hydrogen demand

Options to increase HEFA jet fuel yield using intentional hydrocracking could be limited by hydrogen supplies available to refiners, and HDO, an essential HEFA process step, consumes hydrogen to saturate carbon double bonds in feeds and remove hydrogen from them (Chapter 1). HDO accounts for the majority of HEFA process hydrogen demand, and some HEFA feeds have more carbon double bonds, somewhat higher oxygen content, or both, compared with other HEFA feeds.² Thus, some HEFA feeds consume more process hydrogen, and thereby have more potential to affect jet fuel yield by limiting high-yield processing options, than other feeds.

2.3 Ranking HEFA feedstocks for jet fuel production

2.3.1 Effects on HDO yield

Table 1 summarizes results of our research for the chain length composition of fatty acids in HEFA feedstocks.¹ This table ranks feeds by their jet fuel range (C8–C16) fractions. Since fuels produced by the essential HDO and isomerization steps in HEFA processing reflect the chain lengths of HEFA feeds, the volume percentages shown in Table 1 represent potential jet fuel yield estimates for the processing strategy without intentional hydrocracking (No-IHC).

	Jet fuel fraction (C8–C16)	Diesel fraction (C15–C18)	> C16	>C18
	(volume % on whole feed)	(vol. %)	(vol. %)	(vol. %)
Palm oil	46.5	95.6	53.5	0.5
Menhaden oil	42.3	59.8	57.7	31.2
Tallow fat	33.3	95.2	66.7	0.4
Herring oil	32.7	49.3	67.3	42.7
Poultry fat	32.7	98.1	67.3	1.1
Anchovy oil	32.6	52.2	67.4	40.9
Tuna oil	31.5	48.9	68.5	44.5
Lard fat	30.0	96.5	70.0	2.1
Salmon oil	27.5	49.7	72.5	44.0
UCO 10 th P.*	26.8	97.9	73.2	1.1
Cottonseed oil	25.7	98.7	74.3	0.4
Corn oil (DCO)*	13.6	98.9	86.4	1.1
UCO 90th P.*	12.9	99.2	87.1	0.8
Soybean oil	11.7	99.5	88.3	0.4
Canola oil	4.8	96.8	95.2	3.1
Yield-wtd. Average	26.3	97.4	73.7	1.0

Table 1. Chain length' composition of fatty acid chains in HEFA feedstocks, ranked by jet fuel fraction.

*Cx: fatty acid chain of x carbons. UCO: used cooking oil. 10th P.: 10th Percentile. DCO: Distillers corn oil. Data from Table 8, except world yield data by feed type for yield-weighted average shown from Table 7. Percentages do not add; fractions overlap.

Potential feed-driven effects on jet fuel yield shown in Table 1 range tenfold among feeds, from approximately 4.8% on feed volume for canola oil to approximately 46.5% for palm oil. For context, since supplies of some feeds shown are relatively low, it may be useful to compare high jet fuel yield feeds with soybean oil, the most abundant HEFA feed produced in the U.S.² Palm oil, the top ranked feed for jet fuel yield, could potentially yield nearly four times as much HEFA jet fuel as soybean oil, while menhaden fish oil and tallow might yield 3.6 times and 2.8 times as much jet fuel as soy oil, respectively. Again, this is for the No-IHC processing strategy.

2.3.2 Effects on IHC strategies yields

Feed-driven jet fuel yield effects could allow intentional hydrocracking (IHC) to further boost HEFA jet fuel yield, depending on the IHC processing strategy that refiners may choose. At 49.4 wt.% on feed (Chapter 1), or approximately 58 volume percent given the greater density of the feed than the fuel, IHC jet fuel yield exceeds those of the feed-driven effects shown in Table 1. But IHC adds substantially to the already-high hydrogen demand for essential HEFA process steps (Chapter 1). In this context, the eight highest-ranked feeds for jet fuel yield in Table 1 may allow a refiner without the extra hydrogen supply capacity to use IHC on its entire feed to use Selective-IHC on 53.5% to 70% of its feed. This indirect effect of feed-driven jet fuel yield on process configuration choices has the potential to further boost HEFA jet fuel yield.

Direct feedstock-driven effects on process hydrogen demand, which can vary by feed as described above, must be addressed along with this indirect effect. <u>See</u> Table 2 below.

Feedstock	Jet fraction (C8–C16) ^a		Diesel fraction	n (C15–C18)ª	Longer chains (> C18) ^{a b}	
grouping	HDO kg/b ^c	Sat kg/bd	HDO kg/b ^c	Sat kg/bd	HDO kg/b ^c	Sat kg/bd
High jet/high diesel						
Palm oil	4.38	< 0.01	4.77	0.64	3.52	0.15
Tallow fat	4.53	0.14	4.70	0.62	3.62	0.19
Poultry fat	4.58	0.25	5.04	0.92	3.99	0.67
Lard fat	4.43	0.11	4.84	0.75	5.39	1.68
UCO (10 th Pc.)	4.52	0.20	5.02	0.92	4.30	0.75
Cottonseed oil	4.30	0.02	5.47	1.34	3.51	0.16
High jet/low diesel						
Menhaden oil	4.72	0.28	5.07	0.85	8.64	4.83
Herring oil	4.77	0.30	5.09	0.89	6.11	2.52
Anchovy oil	4.72	0.28	5.22	1.02	8.07	4.31
Tuna oil	4.67	0.24	4.81	0.64	8.06	4.34
Salmon oil	4.51	0.09	5.18	1.01	7.99	4.27
Low jet/high diesel						
Corn (DCO) oil	4.27	0.01	5.60	1.48	4.87	1.38
UCO (90 th Pc.)	4.35	0.09	5.56	1.45	3.38	0.00
Soybean oil	4.28	0.01	5.70	1.59	3.31	0.00
Canola oil	4.35	0.07	5.45	1.37	3.98	0.55

Table 2. Hydrogen demand for hydrodeoxygenation (HDO) of HEFA feedstocks, grouped by HDO jet fuel and diesel hydrocarbon yields. Data in kilograms hydrogen per barrel of feed fraction (kg H₂/b)

a. Feedstock component fractions based on carbon chain lengths of fatty acids in feeds. **b.** Fatty acid chains with more than 18 carbons (> C18), which might be broken into two hydrocarbon chains in the jet fuel range (C8–C16) by intentional hydrocracking (IHC). **c.** HDO: hydrodeoxygenation; hydrogen consumed in HDO reactions, including saturation. **d.** Sat: saturation, H₂ needed to saturate carbon double bonds in the feedstock component, included in HDO total as well and broken out here for comparisons between types of feeds. <u>See</u> Table 8 for details of data, methods, and data sources. Note that fatty acids with 15–16 carbons (C15–C16) are included in both the jet fuel and the diesel fuel ranges. **UCO:** Used cooking oil, a highly variable feed; the 10th and 90th percentiles of this range of variability are shown.

2.3.3 Effects on process hydrogen demand

Table 2 shows process hydrogen demand for HDO, and the portion of HDO accounted for by saturation of carbon double bonds, for fractions of each feedstock. The important detail this illustrates is that saturation of carbon double bonds—especially in the larger-volume diesel fraction and, for fish oils, the longer chain fraction—explains most of the differences in direct effects on hydrogen demand among feeds. At less than 1% to more than half of HDO hydrogen demand, saturation drives differences in hydrogen demand among feed fractions (Table 2). Further, these differences peak in the diesel and longer chain fractions of feeds (*Id.*), and the combined volumes of these diesel and longer chain fractions are both high for all feeds and variable among feeds (Table 1).

Since HDO is an essential step in all HEFA processing strategies (Chapter 1), this evidence that process hydrogen demand varies among feeds because of the processing characteristics of whole feeds means we can compare hydrogen demand across processing strategies based on whole feeds. Table 3 shows results from this comparison across processing strategies.

Feedstock	No-IHC ^a	Selective-IHC ^b	lsom-IHC °
grouping	(kg H ₂ /b)	(kg H ₂ /b)	(kg H ₂ /b)
High jet/high diesel			
Palm oil	4.79	5.79	6.60
Tallow fat	4.71	6.11	6.70
Poultry fat	5.03	6.28	6.85
Lard fat	4.85	6.13	6.65
UCO (10 th P.)	5.01	6.37	6.83
Cottonseed oil	5.44	6.84	7.28
High jet/low diesel			
Menhaden oil	6.18	7.30	8.02
Herring oil	5.50	6.76	7.33
Anchovy oil	6.37	7.67	8.23
Tuna oil	6.29	7.62	8.16
Salmon oil	6.40	7.78	8.25
Low jet/high diesel			
Corn (DCO) oil	5.58	7.19	7.42
UCO (90 th P.)	5.55	7.17	7.39
Soybean oil	5.68	7.33	7.52
Canola oil	5.40	7.16	7.24
Feed-wtd. Average	5.24	6.62	7.07

Table 3. Hydrogen demand in the no intentional hydrocrack	king (No-IHC), Selective IHC and Isom-IHC
processing strategies by feed grouping and feed.	ka H ₂ /b: kiloarams hvdrogen/barrel whole feed

a. Intentional hydrocracking (IHC) is not used. **b.** Intentional hydrocracking (IHC) is selective because in this strategy HDO output is separately isomerized, and only the non-jet fuel hydrocarbons from HDO are fed to IHC. **c.** Isomerization and IHC are accomplished in the same process step in this strategy; all HDO output, including the jet fuel fraction, is fed to intentional hydrocracking in this strategy. <u>See</u> Table 8 for details of data, methods, and data sources;¹ Table 7 for world feed data used to derive feed-weighted averages. **UCO:** Used cooking oil, a highly variable feed; 10th and 90th percentiles of range shown.

2.3.4 Interactions between feedstock and processing choices

Feedstock and process strategy choices combined can impact HEFA process hydrogen demand dramatically (Table 3). As expected, IHC increases hydrogen demand for all feeds, however, feed-driven and process strategy-driven effects overlap. The maximum feed-driven impact in the No-IHC strategy (6.40 kg H₂/b) exceeds the minimum (5.79 kg H₂/b) in the Selective-IHC strategy (*Id.*). Similarly, the maximum feed-driven impact in the Selective-IHC strategy (*Id.*). Similarly, the maximum feed-driven impact in the Selective-IHC strategy (*Id.*). Hydrogen demand increases by approximately 75% from the lowest impact (4.71 kg H₂/b) to the highest impact (8.25 kg H₂/b) combination of feedstock and processing strategy (*Id.*).

Feed rankings for hydrogen demand differ from feed rankings for jet fuel yield (tables 1, 3). Palm oil ranks at the top for jet fuel yield and at or near the bottom for hydrogen demand while in contrast, fish oils are among the highest ranked feeds for both jet yield and hydrogen demand. Livestock fats are among the highest ranked feeds for jet fuel yield and among the lowest ranked feeds for hydrogen demand. The lowest ranked feeds for jet fuel yield, soybean and canola oils, are medium-ranked to high-ranked feeds for hydrogen demand.

Relatively lower hydrogen demand for palm oil and livestock fats across the columns in Table 3 further illustrates how interactions of feedstock and processing strategies can contribute to increased jet fuel yields. For example, the relative Isom-IHC hydrogen demand reduction achievable by switching from soybean oil to tallow (-0.82 kg/b; -10.9%) or from soybean oil to palm oil (-0.92 kg/b; -12.2%) can help to support the highest jet fuel yield processing strategy in situations where refinery hydrogen production capacity is marginally limited.

Results in Table 3 also reveal that some feedstocks switch rankings between the Selective-IHC strategy and other processing strategies. In one example, canola oil feedstock demands more hydrogen than cottonseed oil feedstock for Selective-IHC but slightly less than cottonseed oil for the No-IHC and Isom-IHC strategies (Table 3). This corresponds to the greater fraction of canola oil than cottonseed oil sent to intentional hydrocracking for the Selective-IHC strategy (*see* Table 1, > C16 vol. %).

Another example: Only some 57.7% of the total Menhaden oil feed volume goes to intentional hydrocracking for Selective-IHC, as compared with 88.3% of the soybean oil feed (*Id.*). Consequently, Menhaden oil demands less hydrogen than soybean oil for Selective-IHC but more hydrogen than soybean oil for the other processing strategies (Table 3).

Putting these direct and indirect feed-driven effects together, consider switching from soybean oil to tallow for Selective-IHC at a 50,000 to 80,000 b/d refinery—which is in the range of projects now proposed in California.² The direct effect on HDO from this soy oil-to-tallow switch, shown in the No-IHC column of Table 3 (-0.97 kg H₂/b), carries over to Selective-IHC. The indirect effect sends 21.6% less of the total tallow feed to hydrogen-intensive cracking for Selective IHC than that of soy oil (Table 1, > C16 fractions), further boosting hydrogen savings from the switch to -1.22 kg/b on total feed (Table 3). At feed rates of 50,000–80,000 b/d, this might save the refiner construction and operating costs for 61,000 to 97,600 kg/d of hydrogen capacity. Expressed as volume in millions of standard cubic feet per day (MMSCFD), that is the equivalent of a 24 to 38 MMSCFD hydrogen plant.

At the same time that switching from soy with No-IHC to tallow with Selective-IHC could enable the higher-yield processing strategy, however, net process hydrogen demand would increase by 0.43 kg/b (Table 3), an increase in this example of 8.4 to 13.5 MMSCFD.

Thus, examining feed and processing interactions reveals that switching to feeds with higher jet-range fractions, lower HDO hydrogen demand, or both enables refiners with limited hydrogen supplies to use intentional hydrocracking and thereby further boost jet fuel yields. More broadly, these results show refiners can make more HEFA jet fuel from some feedstocks than from others, but that doing so could result in substantially increased hydrogen demand for some combinations of feedstock and processing choices.

3. Does switching from one HEFA feedstock to another change processing carbon intensity differently when refiners target jet fuel instead of diesel production?

Switching feedstocks and production targets can affect the per-barrel emissions—the *carbon intensity*—of HEFA refining dramatically. The vast majority of direct CO₂ emission from HEFA refining emits from petroleum refinery steam reformers that refiners repurpose to supply HEFA process hydrogen demand.² The reformer emissions further increase with increasing hydrogen production.² As shown in Chapter 2, refiners could switch feeds to boost HEFA jet fuel yield in ways that increase refinery hydrogen demand differently compared with targeting HEFA diesel yield. This chapter evaluates the carbon intensity (CI) impacts of HEFA refining that could result from targeting HEFA jet fuel yield instead of diesel yield, and weighs their significance against the CI of petroleum refining.

3.1 CO2 co-production and emission from hydrogen production by steam reforming

3.1.1 How steam reforming makes hydrogen

Steam reforming is a fossil fuel hydrogen production technology that co-produces CO₂. The process reacts a mixture of superheated steam and hydrocarbons over a catalyst to form hydrogen and CO₂. Hydrocarbons used include methane from natural gas, and it is often called steam methane reforming (SMR), but crude refiners use hydrocarbon byproducts from refining such as propane, along with methane from purchased natural gas, as feeds for the steam reformers that they could repurpose for HEFA processing.

3.1.2 How steam reforming emits CO₂

Both its CO_2 co-product and CO_2 formed in its fuel combustion emit from steam reforming. An energy-intensive process, steam reforming burns fuel to superheat process steam and feed, and burns more fuel for energy to drive pumps and support process reactions. Steam reforming fuel combustion emissions are reformer-specific and vary by plant. Based on verified permit data for 11 San Francisco Bay Area crude refinery steam reforming plants, we estimate median

fuel combustion emissions of approximately 3.93 grams of CO_2 emitted per gram of hydrogen produced (g CO_2/g H₂), conservatively assuming methane fuel.² Co-product emissions are larger still, and vary by feed, with approximately 5.46 g CO_2/g H₂ emitting from methane feed and 6.56 g CO_2/g H₂ emitting from propane feed.² The coproduct and combustion emissions are additive.

3.1.3 Steam reforming CO₂ emission estimate

HEFA refinery steam reforming can be expected to use a feed and fuel mix that includes the propane byproduct from the process reactions discussed in Chapter 1 and natural gas methane. Based on process chemistry we conservatively assume 79% methane/21% propane feed with 100% methane fuel. From these figures we estimate typical HEFA steam reforming emissions of approximately 9.82 g CO₂/g H₂. This estimate is for repurposed crude refinery steam reformers, which are aging and may not be as efficient as newer steam reformers.² For context, however, our estimate is within 2.5% of a recent independent estimate of median emissions from newer merchant steam methane reforming plants, when compared on a same-feed basis.²

Thus, repurposed refinery steam reforming emits CO_2 at nearly ten times its weight in hydrogen supplied. With the high hydrogen demand for HEFA processing shown in Chapter 2, that is a problem. Since steam reforming emissions increase with increased production to meet increased hydrogen demand, the refining CI values reported below are based on the emission factor described above (9.82 g CO_2/g H₂) and the hydrogen demand data from Chapter 2.

3.2 Feedstock effects on CI resulting from HDO hydrogen demand

Hydrodeoxygenation (HDO) is an essential step, and is the major hydrogen consuming step, in all HEFA processing strategies (chapters 1 and 2). The data in Table 4 represent the HEFA processing strategy that uses HDO without intentional hydrocracking (No-IHC).

3.2.1 Feedstock HDO chemistry impact on HEFA refining CI

Table 4 shows effects of feedstock HDO chemistry on HEFA steam reforming emissions. Steam reforming-driven CI (kg/b: kg CO₂ per barrel feed) is substantially higher for whole feeds than for their jet fuel fractions. This is because the non-jet fractions need more hydrogen to saturate carbon double bonds and their combined volumes are larger than that of the jet fuel fraction (tables 1 and 2). Further, the extent of these differences between fractions varies among feeds (*Id.*). This is why feeds change ranks between the columns in Table 4. For example, the jet fuel fraction of palm oil has higher CI than that of soybean oil even though the whole feed data show that soybean oil is a higher CI feed. This variability among feed fractions also is why fish oil CI is high for both the jet fraction and the whole feed.

3.2.2 Need to account for whole feed impact

Does Table 4 show that palm oil could be a higher refining CI feed than soybean oil? No. Since the HDO step is essential for removing oxygen from the whole feed to co-produce both HEFA jet fuel and HEFA diesel, choosing any feed results in the CI impact of that whole feed.

Jet fuel fraction	n (C8–C16)	Whole feed	(≥C8)
Feed (rank)	CO ₂ (kg/b feed)	Feed (rank)	CO ₂ (kg/b feed)
Herring oil	46.8	Salmon oil	62.8
Menhaden oil	46.4	Anchovy oil	62.5
Anchovy oil	46.4	Tuna oil	61.7
Tuna oil	45.9	Menhaden oil	60.7
Poultry fat	45.0	Soybean oil	55.8
Tallow fat	44.5	Distillers corn oil	54.8
UCO (10 th Percentile)	44.4	UCO (90 th Percentile)	54.4
Salmon oil	44.3	Herring oil	54.0
Lard fat	43.5	Cottonseed oil	53.4
Palm oil	43.0	Canola oil	53.1
Canola oil	42.7	Poultry fat	49.4
UCO (90 th Percentile)	42.7	UCO (10 th Percentile)	49.2
Cottonseed oil	42.2	Lard fat	47.6
Soybean oil	42.0	Palm oil	47.1
Distillers corn oil	41.9	Tallow fat	46.2

Table 4. Hydrogen steam reforming emissions associated with the jet fuel fraction *v*. whole HEFA feeds in the HDO (No IHC) refining strategy; comparison of feed ranks by emission rate.

C8–C16: fatty acid chains with 8 to 16 carbon atoms. \ge **C8:** fatty acid chains with 8 or more carbon atoms. **Menhaden:** a fish. **UCO:** used cooking oil, a variable feed; 10th and 90th percentiles shown. Data from Table 2 at 9.82 g CO₂/g H2 steam reforming.

While the jet fuel fraction data in this table helps to inform why feed quality impacts refining CI, we need to account for those CI impacts of whole feeds shown in Table 4.

3.2.3 High-jet feeds can increase or decrease HDO-driven CI

HDO-driven CI findings for whole feeds reveal mixed CI results for high-jet fuel yield feedstocks in No-IHC processing. Fish oils rank highest for steam reforming-driven CI while livestock fats and palm oil rank lowest (Table 4). Thus, for this processing strategy, switching feeds to boost jet fuel yield can increase or decrease refining CI. However, No-IHC also is the processing strategy that HEFA refiners use to maximize diesel yield rather than jet fuel yield. Feedstock quality interacts with other processing choices in different ways that could further boost HEFA refining CI along with jet fuel yield, as shown below.

3.3 Feedstock effects on CI resulting from Selective-IHC hydrogen demand

3.3.1 Process strategy impact of high-jet feeds

High jet yield feeds result in less input to Selective-IHC, enabling marginally hydrogenlimited refiners to further boost jet fuel yield via Selective-IHC, but this requires additional hydrogen (chapters 1 and 2). Intentional hydrocracking (IHC) thus increases hydrogen steam reforming rates and emissions, increasing refining CI for all feeds, as shown in Table 5. This impact overlies the HDO impact, so that feed CI values overlap between columns. For example, the tuna oil No-IHC CI (61.7 kg/b) exceeds the tallow Selective-IHC CI (60.0 kg/b), and the anchovy oil Selective-IHC CI (75.3 kg/b) exceeds the soy oil Isom-IHC CI (73.9 kg/b).

No-IH	IC	Selective	Selective-IHC Isomerization-IH		on-IHC
Feed (rank)	(kg CO ₂ /b)	Feed (rank)	(kg CO ₂ /b)	Feed (rank)	(kg CO ₂ /b)
Salmon oil	62.8	Salmon oil	76.4	Salmon oil	81.0
Anchovy oil	62.5	Anchovy oil	75.3	Anchovy oil	80.8
Tuna oil	61.7	Tuna oil	74.8	Tuna oil	80.1
Menhaden oil	60.7	Soybean oil	72.0	Menhaden oil	78.8
Soybean oil	55.8	Menhaden oil	71.6	Soybean oil	73.9
Corn oil–DCO	54.8	Corn oil-DCO	70.6	Corn oil-DCO	72.8
UCO 90 th P.	54.4	UCO 90 th P.	70.4	UCO 90 th P.	72.6
Herring oil	54.0	Canola oil	70.3	Herring oil	72.0
Cottonseed oil	53.4	Cottonseed oil	67.2	Cottonseed oil	71.5
Canola oil	53.1	Herring oil	66.4	Canola oil	71.1
Poultry fat	49.4	UCO 10 th P.	62.5	Poultry fat	67.2
UCO 10 th P.	49.2	Poultry fat	61.7	UCO 10 th P.	67.1
Lard fat	47.6	Lard fat	60.2	Tallow fat	65.7
Palm oil	47.1	Tallow fat	60.0	Lard fat	65.3
Tallow fat	46.2	Palm oil	56.9	Palm oil	64.8

Table 5. Hydrogen steam reforming emissions from the No-IHC, Selective-IHC, and Isomerization IHC refining strategies: comparisons of whole HEFA feed ranks by emission rate.

IHC: Intentional hydrocracking. **No-IHC:** CO_2 from hydrodeoxygenation (HDO). **Selective-IHC:** CO_2 from HDO plus IHC of HDO output hydrocarbons > C16. **Isomerization-IHC:** CO_2 from HDO plus IHC of all HDO output (> C8). **Menhaden:** a fish. **UCO:** used cooking oil, 10th, 90th percentiles shown. **DCO:** distillers corn oil. Figures shown exclude emissions associated with H₂ losses, depropanation, and inadvertent cracking. Data from Table 3 at 9.82 g CO2/g H2 steam reforming.

3.3.2 Feed chemistry effects on feed rankings for CI

Feedstock CI rankings differ between No-IHC and Selective-IHC processing (Table 5). This is a feed quality impact driven primarily by the different volumes of non-jet fractions sent to IHC among feeds. It boosts the CI of soybean oil from 4.9 kg/b below to 0.4 kg/b above the CI of menhaden oil with the addition of Selective-IHC (*Id.*). With 88.3% of its volume outside the jet fuel range compared with 57.7% of menhaden oil (Table 1, > C16 fractions), soy oil sends 30.6% more feed to Selective-IHC than menhaden oil. More IHC feed requires more hydrogen, boosting steam reforming emissions more with soy than with menhaden oil. Similarly, canola oil sends 27.9% more feed to Selective-IHC than herring oil (*Id.*). This boosts canola oil CI from 0.9 kg/b below to 3.9 kg/b above herring oil CI with the addition of Selective-IHC (Table 5).

3.3.3 How livestock fat feeds could affect soy oil and canola oil refining CI

When switching from soy or canola oil to livestock fat enables a refiner to boost jet fuel yield by repurposing its refinery for Selective-IHC processing, that intentional hydrocracking can boost jet yield from soy and canola oil feeds as well. Thus, instead of shutting down when, for any reason at any time, livestock fat becomes too scarce or expensive, the refiner could make jet fuel by going back to soybean oil or canola oil feedstock. This could increase refining CI by 16.2 kg/b (29%) for soy oil, and 17.2 kg/b (32%) for canola oil, based on our results for the Selective-IHC *versus* No-IHC processing strategies in Table 5.

3.4 Feedstock effects on CI resulting from Isom-IHC hydrogen demand

Livestock fat and palm oil could maximize jet fuel yield by enabling Isom-IHC processing, since these feeds minimize HDO hydrogen demand (chapters 1 and 2). Their relatively lower non-jet fractions do not contribute to this effect on Isom-IHC because, in contrast to Selective-IHC, Isom-IHC processes the entire feed stream output from HDO. Direct effects of feed quality variability on Isom-IHC cracking are relatively weak, since HDO both saturates and removes oxygen from Isom-IHC inputs. Thus, the relative feed rankings for CI from No-IHC processing carry over to the Isom-IHC feed rankings with only minor differences (Table 5). However, by cracking of the entire HDO output, Isom-IHC further boosts hydrogen demand, thus hydrogen steam reforming emissions, resulting in the highest HEFA refining CI for all feeds (*Id.*).

Across feeds and process options, from the lowest to the highest impact combinations of feeds and processing, HEFA refining CI increases by 34.8 kg CO_2/b (75%), and CI increases in 122 (79.7%) of 153 feed switching combinations that could boost jet fuel yield (tables 1, 3, 5).

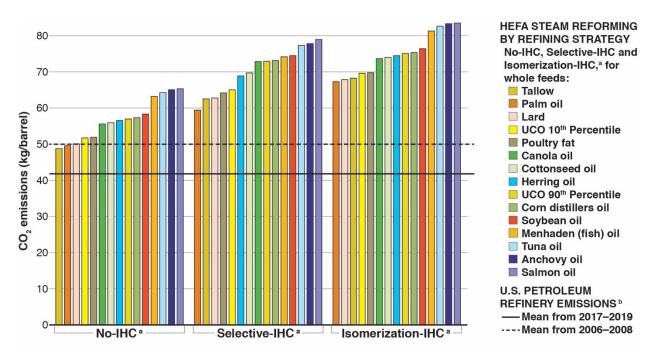

3.5 <u>Comparison with petroleum refining CI by feedstock and processing strategy</u>

Chart 1 plots results for feedstock-related impacts on the variability of HEFA refining CI from HEFA steam reforming emissions against the CI of U.S. petroleum refining. Our results in Table 5 are shown by processing strategy and, within each strategy, each feed is represented by a color-coded column. The height of the column represents the contribution of steam reforming to HEFA refining CI for that particular feed and processing strategy. The solid black line shown at approximately 41.8 kg/b (kg CO₂/barrel crude processed) represents the average U.S. petroleum refining CI from 2015 through 2017.⁶ We use this (41.8 kg/b) as our benchmark. For added context, average U.S. petroleum refining CI from 2006–2008,⁷ a period when the U.S. refinery crude slate was denser and higher in sulfur than during 2015–2017⁸ resulting in higher historic U.S. crude refining industry CI,⁷ is represented by the dashed line at 50 kg/b in the chart.

Please note what HEFA emissions Chart 1 does and does not show. It shows HEFA refining steam reforming emissions only. This helps us focus on our question about refining CI impacts from HEFA feedstock switching to target jet fuel, which are directly related to HEFA steam reforming rates. It *does not* show total direct emissions from HEFA refining.

3.5.1 HEFA refining CI impacts are significant compared with crude refining

Other HEFA refining emissions besides those from steam reforming—from fuel combustion to heat and pressurize HEFA hydro-conversion reactors, precondition and pump their feeds, and distill and blend their products—could add roughly 21 kg/b of additional HEFA refining CI.² Thus, for a rough comparison of petroleum refining CI with total HEFA refining CI, imagine adding 21 kg/b to the top of each column in Chart 1. HEFA refining CI approaches or exceeds *double* the CI of petroleum refining. Clearly, expanding HEFA jet fuel would increase the CI of hydrocarbon fuels processing substantially.

1. HEFA Steam Reforming Emissions v. Total U.S. Petroleum Refining Emissions, kg CO₂/barrel feed input.

a. HEFA steam reforming emissions only: values shown exclude CO_2 emitted by other HEFA refining process and support equipment. This contrasts with the petroleum refining emissions shown, which include all direct emissions from crude refining. Including all direct emissions from HEFA refining could increase the HEFA estimates shown by approximately 21 kg/barrel.² The "No-IHC" strategy excludes intentional hydrocracking (IHC); the "Selective-IHC" strategy adds emission from producing hydrogen consumed by intentional hydrocracking of feed fractions comprised of hydrocarbons outside the jet fuel range; the "Isomerization-IHC" strategy adds emissions from intentional hydrocracking of whole feeds in the isomerization step of HEFA fuels production. HEFA data shown include feed-driven emissions in Table 5 plus additional steam reforming emissions (2.5 kg/b) from producing the additional hydrogen that is lost to unintended side-reaction cracking, solubilization, scrubbing and purging (*see* Table 8).¹

b. U.S. petroleum refinery emissions including total direct CO₂ emitted from steam reforming and all other petroleum refinery process and support equipment at U.S. refineries. Mean from 2015 through 2017 based on total refinery emissions and distillation inputs reported by the U.S. Energy Information Administration (EIA).⁶ Mean from 2006 through 2008 represents a period of historically high-carbon U.S. refining industry crude inputs.⁷⁸

3.5.2 High-jet feed impacts on processing targeting jet fuel can increase refining CI

Feeds that enable intentional hydrocracking to boost jet fuel yield could increase HEFA refining CI significantly (Chart 1). Here we report feed switching CI increments compared with No-IHC processing of soy and canola oils to target diesel yield (*see* Table 5) as percentages of our petroleum crude refining benchmark: Switching to Selective IHC with anchovy and salmon oils increases CI by 47% to 56% (of crude refining CI) while switching to Selective IHC with menhaden oil increases CI by 38% to 44%. Switching to Isom-IHC with tallow increases CI by 24% to 30% while switching to Isom-IHC with palm oil increases HEFA refining CI by 21% to 28% of crude refining CI. Switching to Selective-IHC with tallow increases CI by 10% to 17%. Only Selective-IHC with palm oil has similar CI to that of No-IHC with soy oil (+3%).

3.5.3 High-jet feed CI impacts are mixed in processing targeting HEFA diesel yield

Compared with No-IHC processing of soy or canola oils, which are the combinations of processing and feeds that maximize HEFA diesel yield, No-IHC with fish oils could increase refining CI while No-IHC with palm oil or livestock fats could decrease CI. For example,

switching to anchovy oil could increase No-IHC HEFA refining CI over that of canola and soy oils by 16% to 23% of crude refining CI while switching to tallow could decrease it by 16% to 23% of crude refining CI. But there is a caveat to those estimates.

In theory, feeding tallow to No-IHC processing could boost jet fuel yield to one-third of feedstock volume (Table 1) while lowering CI by 6.8 or 9.5 kg/b below canola or soy oil in No-IHC processing, the strategies refiners use to maximize HEFA diesel yield. However, this would require three barrels of tallow feed per barrel of jet fuel yield, emphasizing a crucial assumption about HEFA biofuel as a sustainable jet fuel solution—it assumes a sustainable feedstock supply. That assumption could prove dangerously wrong, as shown in Chapter 4.

4. HEFA jet fuel feedstock and carbon sinks: Could the feedstocks that maximize HEFA jet fuel instead of diesel yield have comparatively high indirect climate impacts?

Increasing demand for limited supplies of feedstocks that refiners could use to boost HEFA jet fuel yield and make more HEFA jet fuel risks increasing deforestation and other serious indirect climate impacts. HEFA biofuel feedstocks are purpose-derived lipids also needed for food and other uses,^{9 10} are globally traded, and can increase in price with increased biofuel demand for their limited supply.² Ecological degradation caused by expanded production and harvesting of the extra lipids for biofuels has, in documented cases, led to emissions from natural carbon sinks due to biofuels. Those emissions have traditionally been labeled as an "indirect land use impact," but as shown above, refiners seeking to maximize HEFA jet fuel production also could use fish oil feedstocks. The term "indirect carbon impacts," meant to encompass risks to both terrestrial and aquatic carbon sinks, is used in this chapter.

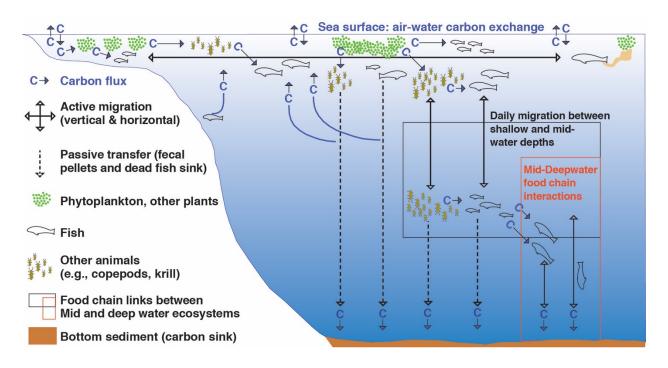
4.1 Natural carbon sinks that HEFA jet fuel feedstock acquisition could affect

Feedstocks that increase HEFA jet fuel production could have indirect impacts on landbased carbon sinks, aquatic carbon sinks, or both. At the same time the impact mechanisms differ between terrestrial and aquatic ecosystems. Part 4.1.1 below discusses carbon sink risks due to land degradation, and part 4.1.2 discusses carbon sink risks due to fishery depletion.

4.1.1 Land degradation risks: Carbon sinks in healthy soils and forests

Even before new Sustainable Aviation Fuel plans raised the potential for further expansion of HEFA feedstock acquisition, biofuel demand for land-based lipids production was shown to cause indirect carbon impacts. A mechanism for these impacts was shown to be global land use change linked to prices of commodities tapped for both food and fuel.¹¹ Instead of cutting carbon emissions, increased use of some biofuel feedstocks could boost crop prices, driving crop and pasture expansion into grasslands and forests, and thereby degrading natural carbon sinks to result in biofuel emissions which could exceed those of petroleum fuels.¹¹

Indirect carbon impacts of lipid feedstocks which further HEFA biofuel expansion could tap have been observed and documented in specific cases. International price dynamics involving palm oil, soybean oil, biofuels and food were linked as factors in the deforestation of Southeast Asia for palm oil plantations.¹² Soy oil prices were linked to deforestation of the Amazon and Pantanal in Brazil for soybean plantations.^{13 14 15} Demand-driven changes in European and U.S. prices were shown to act across the oil crop and animal fat feedstocks for HEFA biofuels.¹⁶ Rapeseed (canola) and soy biofuels demand drove palm oil expansion in the Global South as palm oil imports increased for other uses of those oils displaced by biofuels in the Global North.¹⁷ Indirect land use impacts of some soy oil—and most notably, palm oil—biofuels were found to result in those biofuels emitting more carbon than petroleum fuels they are meant to replace.^{17 18 19} Current U.S. policy discourages palm oil-derived biofuel for this reason.²⁰


As of 2021, aerial measurements suggest that combined effects of deforestation and climate disruption have turned the southeast of the great Amazonian carbon sink into a carbon source.²¹ Market data suggest that plans for further HEFA biofuels expansion have spurred an increase in soybean and tallow futures prices.^{22 23 24} A joint report by two United Nations-sponsored bodies, the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, warns that expansion of industrial biofuel feedstock plantations risks inter-linked biodiversity and climate impacts.²⁵

Moreover, these risks are mutually reinforcing. Potential pollinator declines,²⁶ climate heating-driven crop losses,²⁷ biofuel policy-driven food insecurity,²⁸ and the prospect that, once a biofuel also needed for food is locked into place, retroactive limits on land use conversion could worsen food insecurity,¹¹ reveal another aspect of this carbon sink risk. Namely, the assumption asserted by HEFA biofuel proponents, that we can "grow our way out" of limits on biomass diversion to biofuels by increasing crop yields and reverse course later if that does not work, risks lasting harm.

4.1.2 Fishery depletion risks: The biological carbon pump in world oceans

Increasing demand for fish products could further drive fisheries depletion, thereby risking substantial emissions from the oceanic carbon sink. This potential impact, like that on terrestrial carbon sinks, has received intensifying scientific attention in recent years, but appears to remain less widely known to the general public. Fished species have crucial roles in the mechanisms that send carbon into the oceanic carbon sink, as shown below.

Oceans account for 71% of the Earth surface²⁹ and remove roughly one-fourth to one-third of total carbon emissions from all human activities annually.^{30 31} A portion of the CO₂ exchange between air and water at the sea surface is sequestered in the deep seas via inter-linked shallow, mid-reach, and benthic ecosystems that comprise a "biological pump" in which fished species play key roles. *See* Illustration 1.

Illustration 1. Biological pump to the deep oceans carbon sink

Fish have key roles in the inter-linked shallow, mid-reach, and benthic ecosystems that drive a "biological pump" which sends carbon into the deep seas. In well-lit shallow waters, photosynthesis converts CO₂ into organic carbon that is taken up by plants, then by animals in aquatic food webs, and horizontal migration of faster-swimming species fertilizes phytoplankton blooms in the nutrient-poor open oceans, reinforcing the carbon uptake. Some of this carbon falls to the deep sea in fecal pellets and carcasses of fish and other animals (dashed lines shown), while respiration releases CO₂ from aquatic animals and from bacterial degradation of fecal matter (upward-curving lines), some of which re-enters the atmosphere at the sea surface. Active vertical migration (solid vertical lines) further drives the biological pump. A substantial portion of both fish and their invertebrate prey biomass feeds near the surface at night and in much deeper mid-reaches of the ocean during daylight—where deep-sea fish species migrate and feed as well (black and red boxes). Here in the mid-reaches, a greater portion of the carbon in fecal pellets and dead fish sinks to the bottom, and active migration feeding by deep sea fish transfers additional carbon to the deep sea. The organic carbon that reaches the deep sea can be sequestered in sediments for hundreds to thousands of years.

In well-lit shallow waters, photosynthesis converts CO_2 into organic carbon that is taken up by plants and then by animals in ocean food webs. (Illustration, top.) Horizontal migration of faster-swimming species fertilizes phytoplankton blooms in the nutrient-poor open oceans, reinforcing the carbon uptake (*Id.*).^{25 31} Some of this carbon sinks to the deep sea in fecal pellets and carcasses of fish and other animals (dashed lines shown)^{25 32} but not all of it; some of the CO_2 released in respiration by aquatic animals and bacterial degradation of fecal matter re-enters the atmosphere at the sea surface (upward-curving lines).^{30 32} That sea surface carbon exchange emphasizes the role of active vertical migration (solid vertical lines) in the biological pump.

For both fish and their invertebrate prey, a substantial portion of their ocean biomass feeds near the surface at night and in much deeper mid-reaches of the ocean during daylight²⁵—where deep-sea fish species migrate and feed as well.³² Here in the mid-reaches, a greater portion of the carbon in fecal pellets and dead fish sinks to the bottom, and active migration feeding by

deep sea fish transfers additional carbon to the deep sea.^{25 30 32} The organic carbon that reaches the deep sea can be sequestered in sediments for hundreds to thousands of years.^{25 30 32}

Although impacts are not yet fully quantified,²⁵ at present—even at "maximum sustainable yield"—fishery depletion impacts the oceanic carbon sink by removing roughly half of the fisheries biomass that would otherwise be in world oceans.^{25 31} This exports the carbon in fish from ocean sequestration to land, where that exported carbon then enters the atmosphere.^{25 31} Fished species are targeted selectively, disrupting ecosystems involved in the biological pump and potentially reducing both the passive and the active transport of carbon to deep sea carbon sequestration.^{25 32} Worse, as demands for limited fisheries catches have grown, bottom trawling, which directly disrupts and releases carbon from ocean sediments, may already have reduced the oceanic carbon sink by as much as 15–20%.²⁵ In this context fish oil demand, while only a small fraction of total fisheries catch, is still supplied more from whole fish than from fish byproducts, and is projected to grow by a few percentage points through 2030.¹⁰ Thus, potential additional fish oil demand for biofuel poses an indirect carbon impact risk.

4.2 Historic impact assessments for high jet fuel yield HEFA feedstocks

HEFA refiners could maximize jet fuel instead of diesel production using palm oil, fish oil, or livestock fats for feedstocks, as shown in Chapter 2 above. Historic demand for these specific feedstocks has resulted in relatively high indirect carbon impacts from one of them, and raises questions about future impacts from increased demand for the other two high jet fuel yield feeds.

4.2.1 Palm oil: High jet fuel yield, high impact and current use restriction

With 46.5% of its fatty acid feedstock volume comprised of carbon chains in the jet fuel range, palm oil ranks first among major HEFA feedstocks for the potential to increase HEFA jet fuel production. <u>See</u> Table 1. Palm oil also has perhaps the highest known potential among HEFA feedstocks for indirect land use impacts on natural carbon sinks (§ 4.1.1). Some palm oil-derived biofuels have reported fuel chain carbon intensities that exceed those of the petroleum fuels they are meant to replace (*Id*.). However, current U.S. policy restricts the use of palm oil-derived biofuels to generate carbon credits due in large part to this high indirect carbon impact.²⁰ Future biofuel demand could affect the efficacy of this use restriction.

4.2.2 Fish oil: High jet fuel yield and low carbon impact assumed for residual supply

Fish oils rank second, fourth, sixth, seventh and ninth for jet fuel-range fractions at 42.3%, 32.7%, 32.6% and 27.5% of their feed volumes. <u>See</u> Table 1. Moreover, their relatively low diesel fractions (48.9–59.8%) and relatively high feed fractions with carbon chains longer than the ideal diesel range, which could be broken into twin jet fuel hydrocarbons (*Id.*), might favor jet fuel production by intentional hydrocracking strategies. Current biofuel use of fish oil is low, and is assumed to be residual biomass, and thus to have relatively low indirect carbon impact. However, that assumption is based on historic fish oil usage patterns at historic biofuel demand. If HEFA refiners seek to maximize jet fuel production by tapping fish oil in larger amounts, this

has a potential to result in high indirect carbon sink risk by further depleting fisheries that contribute to the biological pump which sequesters carbon in the deep sea (§ 4.1.2).

4.2.3 Livestock fat: High jet fuel yield and low carbon impact assumed for residual supply

Tallow, poultry fat, and lard rank third, fifth, and eighth for jet fuel-range fractions at 33.3%, 32.7%, and 30% of their feed volumes, respectively. <u>See</u> Table 1. For these livestock fats, HEFA feedstock acquisition impact and supply estimates are linked by the assumption that only "waste" residues of livestock fat biomass will be used for biofuels.^{33 34} This results in lower estimates for feedstock acquisition impacts by assuming that impacts from using farm and pastureland to feed the livestock are assigned to other uses of the livestock, such as food. At the same time, this assumption limits the supply for biofuels to only "waste" which, it is assumed, will not result in using more land for livestock feed in response to increased HEFA feedstock demand. These current assumptions—that increased demand will not cause land use impacts because it will not increase livestock production—limit current estimates of both supply and indirect carbon impact. Again, however, the current assumptions driving indirect carbon impact estimates are based on historic lipids usage patterns, which may change with increasing HEFA feedstock demand.

4.3 <u>Feedstock acquisition risks to carbon sinks could be substantial at usage volumes</u> <u>approaching the current HEFA jet fuel blend limit</u>

Impacts of these differences among feedstocks—and HEFA feedstock acquisition impacts overall—depend in large part upon future HEFA demand for limited current feedstock supplies. Moreover, indirect carbon impacts can include impacts associated with displacing other needs for these lipid sources, notably to feed humans directly and to feed livestock or aquaculture fish. This section compares potential HEFA SAF feedstock demand with limited current lipid supplies to assess potential indirect carbon impacts of specific and combined HEFA feedstocks.

4.3.1 Potential future HEFA jet fuel feedstock demand in the U.S.

SAF implementation could drive dramatic HEFA feedstock demand growth. In 2019, the most recent year before COVID-19 disrupted air travel, U.S. SAF consumption was estimated at 57,000 barrels,³⁵ only 0.009% of the 636 million barrels/year (MM b/y) U.S. jet fuel demand.³⁶ Since SAF must be blended with petroleum jet fuel and can be a maximum of half the total jet fuel,³⁵ implementation of SAF goals could result in future jet biofuel production of as much as 318 MM b/y assuming no growth in jet fuel demand. This would represent SAF growth to approximately 5,580 *times* the 2019 SAF biomass demand. HEFA technology is on track to claim the major share of this prospective new biomass demand.

Since 2011, "renewable" diesel production used in California alone, a surrogate for U.S. HEFA biofuel use,³⁵ grew by a factor of 65 times to 2.79 MM b/y as of 2013, by 142 times to 6.09 MM b/y as of 2016, and 244 times to 10.5 MM b/y as of the end of 2019.³⁷ Planned new HEFA capacity targeting the California fuels market and planned for production by 2025 totals approximately 124 MM b/y,³⁸ another potential increase of more than tenfold from 2019–2025.

Financial incentives for oil companies to protect their otherwise stranded refining assets are a major driver of HEFA growth—for example, in the two biggest biorefineries to be proposed or built worldwide to date.² More crude refining asset losses can thus spur more HEFA growth.²

Further idling of crude refining assets is indeed likely. Climate constraints drive the need to replace gasoline, with most credible expert assessments showing approximately 90% of gasoline to be replaced in mid-century climate stabilization scenarios.^{39 40 41 42} More efficient electric vehicles with lower total ownership costs will force gasoline replacement as vehicle stock rolls over, and this independent driver could replace approximately 80% of U.S. gasoline vehicles by mid-century.² Designed and built to co-produce gasoline and maximize gasoline production, U.S. crude refineries cannot produce distillates alone and will be idled as gasoline is replaced.²

Refiners can—and would be highly incentivized to—protect those otherwise stranded assets by repurposing their crude refining equipment for HEFA biofuel production. Assuming the low end of the mid-century crude refining asset loss projections noted above, 80% of existing U.S. refinery hydrogen production capacity could be repurposed to supply approximately 2.66 million metric tons per year (MM t/y) of hydrogen for HEFA production at idled and repurposed crude refineries. <u>See</u> Table 6 below.

Depending on the mix of HEFA jet fuel processing strategies that the prospective new HEFA refining fleet might employ, this much repurposed hydro-conversion capacity could make enough HEFA jet fuel to replace 36% to 39% of total U.S. jet fuel demand, assuming no growth from 2019 demand. *Id.* Notably, if the existing³⁷ and planned³⁸ capacity through 2025 is built and tooled for the same jet fuel yields, this mid-century projection implies a threefold HEFA capacity growth rate from 2026–2050, slower than the tenfold growth planned from 2019–2025.

In order to "book-end" an uncertainty previewed in chapters 1 and 2 above, Table 6 shows two potential HEFA jet fuel growth scenarios. Scenario S-1 assumes a future U.S. HEFA refining fleet with 30% of refineries using the No-IHC strategy and 70% using the Isom-IHC strategy. This scenario assumes many refiners that repurpose for HEFA production lack existing equipment to repurpose for intentional hydrocracking separately and in addition to the hydro-deoxygenation and isomerization reactors needed for all HEFA processing, and refiners choose not to build new hydrocracking capacity into their asset repurposing projects. Scenario S-2 assumes the opposite: many refiners have that existing capacity or choose to build new capacity into their repurposing projects, resulting in a mix with 20% of refineries using the No-IHC strategy, 70% using the Selective-IHC strategy, and 10% using the Isom-IHC strategy.

Relying mainly on Selective-IHC, which cuts hydrogen demand compared with Isom-IHC, Scenario S-2 makes more jet fuel from the same amount of repurposed hydrogen capacity, but nevertheless, at 71–72 MM t/y, feedstock demand is very high in both scenarios (Table 6).

Table 6. Potential HEFA jet fuel growth scenarios to mid-century in the U.S.

t: metric ton	MM t/y: million metric tons/year
---------------	----------------------------------

Total U.S. crude refining hydrogen plants capacity in 2021 (MM t/y) ^a Assumption by 2050: 80% repurposed for HEFA biofuel (MM t/y)					
Scenario S-1: No use	of selective and	l intentional hy	drocracking (Selectiv	/e-IHC) ª	
Process strategy		No-IHC	Selective-IHC	Isom-IHC	Total
Refineries breakdown	(% feed)	30 %	0 %	70 %	100 %
Hydrogen input ^b	(kg/t feed)	9.04	0.00	28.5	37.5
Feed input ^b	(MM t/y)	21.3	0.00	49.7	71.0
Jet fuel yield c	(MM t/y)	4.75	0.00	24.5	29.3
HEFA jet fuel produ	ction in the U.S.	as a percentage	e of total 2019 U.S. jet	fuel demand:	36 %
Scenario S-2: High us	e of selective a	nd intentional h	ydrocracking (Selec	tive-IHC) ª	
Process strategy		No-IHC	Selective-IHC	Isom-IHC	Total
Refineries breakdown	(% feed)	20 %	70 %	10 %	100 %
Hydrogen input ^b	(kg/t feed)	6.02	26.6	4.06	36.7
Feed input ^b	(MM t/y)	14.5	50.7	7.25	72.4
Jet fuel yield ^c	(MM t/y)	3.23	25.0	3.58	31.8
HEFA jet fuel produ	ction in the U.S.	as a percentage	e of total 2019 U.S. jet	fuel demand:	39 %

Absent policy intervention, given renewable incentives and assuming severe feed supply limitations are overcome, U.S. HEFA jet fuel production could replace 36–39% of current U.S. petroleum jet fuel, and demand 71–72 million tons/year of lipids feedstock annually, by mid-century. Crude refiners could be highly incentivized to repurpose assets, which would be stranded by climate constraints and electric vehicles, for HEFA biofuels; less clear is the mix of processing strategies the repurposed HEFA refining fleet would use. Refiners could boost jet fuel yield by intentional hydrocracking of HEFA isomerization feeds (Isom-IHC), or do so while limiting hydrogen costs by intentional hydrocracking of selected feed fractions separately from the isomerization step needed for all fractions (Selective-IHC). However, some refineries lack existing equipment for one or both IHC options and may not choose to build onto repurposed equipment. Scenarios in this table span a conservatively wide range of fleet-wide processing strategies in order to "book-end" this uncertainty, resulting in the feed and fuel ranges shown above. The 80% petroleum capacity idling assumed by 2050² is generally consistent with highly credible techno-economic analyses, which, however, generally assume a different biofuel technology and feedstock source.^{40–42} **a.** U.S. refinery hydrogen capacity from *Oil & Gas Journal.*⁵ **b.** Hydrogen and feed inputs based on feed-weighted data from Table 3 and a feed blend SG of 0.914. **c.** Jet fuel yields based on yield-wtd. data from Table 1 at 0.775/0.914 jet/feed SG (No-IHC) and Pearlson et al. (IHC).³ U.S. jet fuel demand in 2019 from USEIA (636.34 MM bbl),³⁶ or 81.34 MM t/y at the petroleum jet fuel density in the survey reported by Edwards (0.804 SG).⁴³ Diesel is the major HEFA jet fuel coproduct. Figures shown may not add due to rounding.

4.3.2 Limited HEFA jet fuel feedstock supplies in the U.S. and world

Current feedstock supplies limit the sustainability of HEFA jet fuel as a substantial component of U.S. jet fuel at rates well below the 50% SAF blend limit. Total current U.S. lipids production for all uses could supply only 29% of the feedstock needed for HEFA jet fuel to replace 36% to 39% of 2019 U.S. jet fuel use, as shown for scenarios S-1 and S-2 in Table 7 below. Other uses of these lipids crucially involve direct and indirect human needs for food, and in these scenarios, U.S. HEFA biofuel alone displaces one-third of all other existing lipids usage globally (Table 7).

Further, at even half the HEFA jet fuel production rates shown in Table 7, current global production of no one lipid source can supply the increased biofuel feedstock demand without displacing significant food system resources. This observation reveals the potential for impacts that cut across multiple prospective HEFA feedstock sources.

MM t/v: million metric tons/year

Table 7. HEFA feedstock demand in potential U.S. petroleum jet fuel replacement scenarios compared with total current U.S. and world production for all uses of lipids.

wiw oy.	Shi metho tono/j	(eal					
U.S. Feedstock	No 100% Replacement		36% Scen	ario S-1	39% Scenario S-2		
Demand Scenarios ^a	NA: ble	nd limit	71.0 M	71.0 MM t/y		72.4 MM t/y	
Current Feed-	U.S. World		Supply/De	Supply/Demand (%)		mand (%)	
stock Supply	(MM t/y)	(MM t/y)	U.S.	World	U.S.	World	
Palm oil ^b	0.00	70.74	0%	99%	0%	98%	
Fish oil °	0.13	1.00	0.18%	1.4%	0.18%	1.4%	
Livestock fat d	4.95	14.16	7%	20%	7%	20%	
Soybean oil ^e	10.69	55.62	15%	78%	15%	77%	
Other oil crops ^e	5.00	73.07	7%	103%	7%	101%	
Total Supply	20.77	214.59	29%	309%	29%	302%	

Total current U.S. production for all uses of lipids also tapped for biofuel could supply only 29% of potential U.S. HEFA jet fuel feedstock demand in 2050. a. HEFA feedstock demand data from Table 6. b. Palm oil data from Oct 2016–Sep 2020.44 c. Fish oil data from 2009–2019 (U.S.)⁴⁵ and unspecified recent years (world).⁴⁶ d. Livestock fat data from various dates (US)⁹ and 2018 (world).⁴⁷ e. Soybean oil, palm oil, and other oil crops data from unspecified dates for used cooking oil (US),⁹ Oct 2016-Sep 2020 for oil crops also used for biofuel (US),48 and Oct 2016-Sep 2020 for oilseed crops (world).44

4.3.3 Feed-specific and total feed-blend indirect carbon impact potentials

As shown in Table 7 and discussed above, the scale of potential HEFA feedstock demand affects the answer to our question about whether feedstocks refiners could use to increase HEFA jet fuel yield could result in relatively more serious indirect carbon impacts.

Palm oil: High volume displacement and international fueling impacts potential

With the highest global availability of any current HEFA feed (Table 7), palm oil is likely to fill in for current uses of other HEFA feeds that growing U.S. feedstock demand for HEFA jet fuel would displace from those uses. This could occur regardless of restrictions on palm oil biofuel, increasing the indirect carbon impacts associated with palm oil expansion. Deforestation in Southeast Asia caused by palm oil expansion has been linked to biofuel demand for soy and rapeseed (canola) oils in the U.S. and Europe at past, much lower, biofuel feedstock demand, as described in section 4.1.1. Its high global availability also increases the likelihood that, despite U.S. policy, palm oil derived HEFA jet fuel could burn in many commercial flights. Jets may fuel this palm biofuel in various nations-including fueling for the return legs of international flights originating in the U.S. Palm oil can thus be considered a high jet fuel yield and relatively high indirect carbon impact HEFA feedstock.

Fish oil: Unique risk at low HEFA feed blend volume

In contrast to palm oil, fish oil is an extremely low availability HEFA feedstock and is unique among HEFA feeds in raising risks to the oceanic carbon sink. Equally important, fish oil has hard-to-replace aquaculture and pharmaceutical uses.¹⁰ At 1.4% of current world supply for HEFA jet fuel demand scenarios in Table 7, fish oil is unlikely to be targeted as a major

HEFA feedstock industry wide. But this also means that existing uses of fish oil that are hard to replace could be fully displaced, driving further fisheries depletion, even if fish oil comprises as little as 1.4% of potential future HEFA feeds. Increased fishing pressure for fish oil is difficult to discount in demand scenarios approaching those shown (*Id.*), as significant upward pressure on lipids prices could impact lipids markets globally. Indeed, world fish oil demand for all uses is projected to grow and continue to be produced in substantial part from whole fish catch.¹⁰ That fish biomass would essentially be extracted from the oceanic carbon sink to emit carbon from land-based uses, however, the larger and more uncertain impact could be on the effectiveness of ocean carbon sequestration via the biological pump (§ 4.1.2).

Available information thus identifies the potential for a future fish oil biofuel impact which may or may not materialize but nevertheless poses significant risk. Fish oil can be considered a high jet fuel yield and relatively high indirect carbon risk HEFA feedstock.

Livestock fat: likely displacement and possible supply growth impacts

While total current livestock fat production could supply only 20% of potential HEFA feedstock demand (Table 7), its relatively high jet fuel yield and relatively low (assumed) indirect carbon impacts could make livestock fat an important fraction of the expanding HEFA feeds mix. This would displace its existing uses, where the fats would likely be replaced by expanded demand for other lipids with relatively higher indirect carbon impacts. High-availability replacements such as palm and soy oils (*Id.*) would likely fill those displaced uses, and both palm and soy oils have relatively high indirect carbon impacts (§ 4.1.1).

Additionally—and notwithstanding the likelihood that livestock protein production would remain the priority—it is possible that the unprecedented growth in livestock fat demand might alter the balance among choices for producing human protein intake in favor of this high jet fuel yield "byproduct" feedstock. This balance is dynamic, as suggested by trends either toward or away from vegetarian diets in various human populations globally, such that this possibility is difficult to discount given the potential for unprecedented livestock fat demand growth. And if HEFA demand were to drive livestock production growth, livestock production is, in fact, a high carbon emission enterprise.^{31 49} In view of these likely and possible impacts, livestock fat can be considered a high jet fuel yield and relatively high indirect carbon risk HEFA feedstock.

Feed blends: limited residue supply worsens indirect carbon impacts

Impacts and risks of high jet fuel yield feedstock add to those of feed blends that could be used for HEFA jet fuel, and limited global "residue" feedstock supply heightens these impacts.

HEFA feedstock demand to replace just 18% of 2019 U.S. jet fuel use—half that shown in Table 7—would far exceed current total U.S. production for *all uses* of lipids also tapped for biofuels. One implication of this is the need to consider food and fuel uses of the global lipids supply by other nations. Importantly, at 4.28% of world population, the U.S. per capita share of world production for low impact "residue" feeds from livestock fat and fish oil (Table 7) is less

than 0.65 MM t/y, less than 1% of potential U.S. HEFA jet fuel feedstock demand (Id.). The limited supply of low impact "residue" feedstocks, in turn, limits alternatives to palm oil or livestock production growth that can feed potential HEFA jet fuel growth. Current major feed alternatives for HEFA jet fuel are limited to soybean oil and other oil crops (Id.).

For example, what if U.S. palm biofuel is prohibited, livestock and fish oil production do not grow, and U.S. HEFA "residue" feedstock acquisition grows to eight times its per capita share (5.2 MM t/y)? At half of its minimum potential mid-century growth, HEFA feedstock demand for SAF in the U.S. would be approximately 35.5 MM t/y (Table 7). This 5.2 MM t/y of low-impact feed would meet only 15% of that demand and leave 30.3 MM t/y of that demand unmet. Supplying the 30.3 MM t/y of unmet demand for just half of potential U.S. HEFA jet fuel growth could induce growth of 23.5% in current combined global production for soy and other oil crops, excluding palm oil (*Id.*).

Moreover, the excess U.S. use of limited global residue supply in the example above could have an impact. It could displace the lower-impact HEFA jet fuel feed for SAF fueled in other nations, which could replace residue feeds with higher indirect carbon impact feeds. This would only shift emissions to HEFA jet fueling elsewhere, without providing a global climate benefit.

Thus, even if U.S. policy effectively discourages palm oil biofuel and livestock production does not grow, the potential HEFA jet fuel expansion could be expected to spur an expansion of soybean, corn, and other plant oil crops. Significant indirect carbon impacts have been linked to biofuels demand for soybean and other plant oil feedstocks at past biofuel demand levels that were substantially lower than current and potential future HEFA demand (§ 4.1.1). While this complicates the answer to our question about indirect carbon impacts of feeds to boost HEFA jet fuel yield, importantly, it further informs our answer. It shows that these heightened impacts and risks would add to significant potential impacts of increased total HEFA feedstock demand.

In plausible future SAF implementation scenarios, among the relatively high jet fuel yield feedstocks, palm oil could have relatively serious indirect carbon impacts, and both fish oil and livestock fat could pose relatively serious but currently uncertain indirect carbon impact risks. Those impacts and risks would add to significant potential carbon sink impacts from the blends of feedstocks that could supply HEFA refineries, in which lower impact "residue" feedstocks could supply only a small fraction of total HEFA feedstock growth. Natural limits on total supply for the type of feedstock that HEFA technology can process appear to make replacing any significant portion of current petroleum jet fuel use with this type of biofuel unsustainable.

5. Limitations and suggestions for future work

Two types of data limitations which may affect potential outcomes for SAF were identified in the course of this research. The first involves HEFA technology: interchangeability among other uses of its feedstocks; and its potential future evolution. These HEFA-specific limitations are discussed in Section 5.1 below. The second involves other alternatives to petroleum jet fuel combustion which, though they are outside the scope of this report, warrant mention due to limitations of HEFA technology identified by this research. These are discussed briefly as suggested priorities for future work in Section 5.2.

5.1 <u>HEFA biofuel impact assessment data limitations</u>

5.1.1 Limited cross-feed displacement quantification data

HEFA feedstocks are not "wastes." All of them are lipids, and more specifically, triacylglycerols of fatty acids, which can be converted to functionally similar biological or chemical uses by many biological processes (e.g., digesting food) and chemical processes (e.g., HEFA processing with hydrocracking). Further, these lipids have interchangeable and largely competing uses now, including food for human populations, livestock feeds, pet food, aquaculture feeds, and feedstocks for making soap, wax, lubricants, plastics, natural pigments, cosmetic products and pharmaceutical products.^{9 10} Accordingly, increased biofuel demand for one source of these lipids displaces another existing use of that feedstock, thereby increasing demand and prices for other sources of lipids as well. Indeed, this has occurred, leading to indirect land use impacts that increased carbon emissions associated with biofuels (§ 4.1.1).

For example, if diverting tallow from soap making to HEFA jet fuel forces soap makers to use more palm oil, that jet fuel indirectly emits carbon associated with that extra production of palm oil. The livestock fat biofuel would cause an indirect carbon impact that current biofuel impact accounting practices for "waste" residue feedstocks assume it does not cause.

However, the hypothetical extreme wherein all lipids are 100% fungible, and any increase in HEFA demand for any of these feedstocks would have the same indirect impact by increasing collective demand for all other feeds by the same amount, also seems unrealistic. Some types of lipids, such as those that increase jet fuel production and those people eat directly, could attract relatively higher demand and command relatively higher prices. At present, *how much* demand increase for each lipid source increases indirect carbon impacts associated with cross-feed demand increase has not yet been quantified by universally accepted estimates.

Herein, we take the view that the uses of lipids also tapped for HEFA biofuels are fungible to a significant extent which varies among specific lipids sources and uses. In this view, indirect carbon impacts of future demand for palm oil exceed those of other HEFA feeds which would not be favored by refiners seeking to boost jet fuel production, but by amounts that are not yet fully quantifiable. That quantitative uncertainty results from the data limitations discussed above and explains why this report does not attempt to quantify the feed-specific indirect carbon impacts documented in Chapter 4.

5.1.2 Renewable fuel hydrogen specification error

Splitting water with electricity supplied by solar or wind power—renewable powered electrolysis—produces zero-emission hydrogen fuel. Unfortunately, renewable fuel standards incentivize HEFA fuels even though much of the hydrogen in those hydrocarbons is produced from non-renewable fossil fuels. This is a mistake. This mistake has led to an important limitation in the data for assessing the future potential of HEFA jet fuel.

Hydrogen steam reforming repurposed from crude refining drives the high CI of HEFA refining and its variability among HEFA feedstocks and processing strategies (Chapter 3). Renewable-powered electrolysis could eliminate those steam reforming emissions and result in HEFA refining CI lower than that of petroleum refining.² However, the combination of public incentives to refiners for HEFA biofuel, and their private incentives to avoid costs of stranded steam reforming assets they could repurpose and electrolysis they need not build to reap those public incentives, has resulted in universal reliance on steam reforming in HEFA processing. Would the public incentives outweigh the private incentives and cut refining CI if this mistake were corrected, or would the companies decide that another alternative to HEFA jet fuel is more profitable? Since current fuel standards allow them to maximize profits by avoiding the question, there are no observational data to support either potential outcome.

Additionally, if refiners were to replace their steam reformers with renewable-powered electrolysis, energy transition priorities could make that zero-emission hydrogen more valuable for other uses than for biofuel,² and biomass feed costs also would weigh on their decisions.¹⁹ Thus, for purposes of the potential impacts assessment herein, and in the absence of observational data on this question, we take the view that assuming HEFA refining without steam reforming emissions would be speculative, and would risk significant underestimation of potential HEFA jet fuel impacts.

5.1.3 Proprietary catalyst development data

Catalysts are crucial in HEFA refining, and although many catalyst data are claimed as trade secrets, their refining benefits are typically advertised, especially if new catalysts improve yields. The search for a new catalyst that can withstand the severe conditions in HEFA reactors and improve processing and yields has been intensive since at least 2013.^{50 51 52 53 54 55 56}

From this we can infer two things. First, given the maturity of the hydro-conversion technology crude refiners repurpose for HEFA refining, and that long and intensive search, a newly invented catalyst formulation which improves reported HEFA jet fuel yield significantly appears unlikely. Second, given the incentive, the invention of such a new catalyst is possible. Again, however, many specific catalyst data are not reported publicly. Our findings herein are based on publicly reported, independently verifiable data. This limitation in publicly reported catalysis data thus has the potential to affect our yields analysis.

5.2 Priorities for future work

5.2.1 Cellulose biomass alternatives—what is holding them back?

Cellulosic residue biomass such as cornstalks, currently composted yard cuttings, or sawdust can be used as feedstock by alternative technologies which qualify as SAF.^{19 35} Using this type of feedstock for SAF could lessen or avoid the indirect carbon impacts from excessive HEFA jet fuel demand for limited lipids biomass that are described in Chapter 4. Indeed, economy-wide analyses of the technologies and measures to be deployed over time for climate stabilization suggest prioritizing cellulosic biomass, to the extent that biofuels will be needed in some hard-to-decarbonize sectors.^{42 57 58} Despite its promise, however, the deployment of cellulosic distillate biofuel has stalled compared with HEFA biofuel. Less clear are the key barriers to its growth, the measures needed to overcome those barriers, and whether or not those measures and the growth of cellulosic jet fuel resulting from them could ensure that SAF goals will be met sustainably. This points to a priority for future work.

5.2.2 Alternatives to burning jet fuel-need and potential to limit climate risks

Even complete replacement of petroleum jet fuel with SAF biofuel combustion would result in ongoing aviation emissions, and would thus rely on additional and separate carbon capturesequestration to give us a reasonable chance of stabilizing our climate. At the current jet fuel combustion rate the scale of that reliance on "negative emission" technologies, which remain unproven at that scale, is a risky bet. Meanwhile, besides alternative aircraft propulsion systems, which are still in the development stage, there are alternatives to jet fuel combustion which are technically feasible now and can be used individually or in combination.

Technically feasible alternatives to burning jet fuel include electrified high-speed rail, fuel cell powered freight and shipping to replace air cargo, and conservation measures such as virtual business meetings and conserving personal air-miles-traveled for personal visits. While we should note that such travel pattern changes raise social issues, so does climate disruption, and

most people who will share our future climate are not frequent fliers. Importantly as well, public acceptance of new travel alternatives is linked to experiencing them. Thus, biofuel limitations, climate risks, and human factors suggest needs to prioritize the development and deployment of alternatives to petroleum jet fuel that do not burn carbon.

5.2.3 Limited safety data record for flying with new fuels

Jet biofuels appear to differ from petroleum jet fuels in their cold flow properties at high altitude, combustion properties, and potential to damage fuel system elastomer material.¹⁹ Those that can be used as SAF have been approved subject to blending limits, which permit SAF to be "dropped-in" to conventional jet fuel up to a maximum of 50% of the blend.⁵⁹ All seven types of biofuels approved for SAF are subject to this condition.⁵⁹ SAF/petroleum jet fuel blends that do not meet this condition are deemed to present potential safety issues.⁵⁹

However, remarkably limited historical use of SAF (§4.3.1) has resulted in a limited data record for assessing its safety in actual operation. That is important because new hazards which result in dangerous conditions over long periods of operation have repeatedly been discovered only by rigorous post-operational inspection or post-incident investigation, the histories of both industrial and aviation safety oversight show. There is an ongoing need to ensure flight safety risks of biofuels are closely monitored, rigorously investigated, transparently communicated, and proactively addressed by "inherent safety measures"⁶⁰ designed to eliminate any specific hazards identified by that future work.

Fatty acid (FA) in HEFA oil feed			Oxygen		Carbon	FA-specific hydrogen input		
			Density	content	double	Deoxygenation ^c	Saturation ^{d. e}	
common name	Shorthand	Formula ^b	(kg/b)*	(wt. %)*	bonds	$(kg H_2/b)$	(kg H ₂ /b)	
Caprylic Acid	C8:0	C ₈ H ₁₆ O ₂	145	22.2	0	8.09	0.00	
Capric Acid	C10:0	C10H20O2	142	18.6	0	6.65	0.00	
Lauric Acid	C12:0	$C_{12}H_{24}O_2$	140	16.0	0	5.63	0.00	
Myristic Acid	C14:0	C14H28O2	137	14.0	0	4.84	0.00	
Myristoleic Acid	C14:1	$C_{14}H_{26}O_2$	143	14.1	1	5.10	1.27	
Pentadecanoic Acid	C15:0	C ₁₅ H ₃₀ O ₂	134	13.2	0	4.45	0.00	
Palmitic Acid	C16:0	C16H32O2	135	12.5	0	4.26	0.00	
Palmitoleic Acid	C16:1	C ₁₆ H ₃₀ O ₂	142	12.6	1	4.50	1.13	
Margaric Acid	C17:0	C17H34O2	136	11.8	0	4.04	0.00	
Stearic Acid	C18:0	C ₁₈ H ₃₆ O ₂	134	11.2	0	3.79	0.00	
Oleic Acid	C18:1	C18H34O2	141	11.3	1	4.04	1.01	
Linoleic Acid	C18:2	C18H32O2	143	11.4	2	4.12	2.06	
Linolenic Acid	C18:3	C18H30O2	145	11.5	3	4.21	3.16	
Stearidonic Acid	C18:4	C18H28O2	148	11.6	4	4.33	4.33	
Arachidic Acid	C20:0	C20H40O2	131	10.2	0	3.38	0.00	
Gondoic Acid	C20:1	C20H38O2	140	10.3	1	3.65	0.91	
Eicosadienoic Acid	C20:2	C20H36O2	144	10.4	2	3.76	1.88	
Homo-y-linoleic Acid	C20:3	C20H34O2	146	10.4	3	3.84	2.88	
Arachidonic Acid	C20:4	C20H32O2	147	10.5	4	3.88	3.88	
Eicosapentaenoic Acid	C20:5	C20H30O2	150	10.6	5	4.00	5.00	
Henicosanoic Acid	C21:0	C21H42O2	142	9.80	0	3.50	0.00	
Heneicosapentaenoic Acid	C21:5	C21H32O2	149	10.1	5	3.79	4.74	
Behenic Acid	C22:0	C22H44O2	131	9.39	0	3.09	0.00	
Erucic Acid	C22:1	C22H42O2	137	9.45	1	3.26	0.81	
Docosadienoic Acid	C22:2	C ₂₂ H ₄₀ O ₂	143	9.51	2	3.43	1.71	
Docosatetraenoic Acid	C22:4	C22H36O2	151	9.62	4	3.66	3.66	
Docosapentaenoic Acid	C22:5	C22H34O2	148	9.68	5	3.62	4.52	
Docosahexaenoic Acid	C22:6	C ₂₂ H ₃₂ O ₂	150	9.74	6	3.68	5.52	
Lignoceric Acid	C24:0	C24H48O2	140	8.68	0	3.06	0.00	
Tetracosenoic Acid	C24:1	C24H46O2	141	8.73	1	3.11	0.78	

Table 8. Data and methods table for feed-specific estimates.^a

* b (barrel): 42 U.S. gallons; wt. %: weight percent on fatty acid

a. See notes to this table for feedstock-specific data sources.

b. Formula symbols; carbon: C (12.011 g/mol); hydrogen: H (1.00794 g/mol); oxygen: O (15.995 g/mol).

c. Deoxygenation: Hydrogen consumed to remove and replace oxygen and propane knuckle-fatty acid bonds.

b. Saturation: Hydrogen consumed to saturate carbon double bonds in HEFA processing.

e. Additional process hydrogen consumption in side-reaction cracking, solubilization, scrubbing and purge losses not shown.

Whole feed fatty acids								
Fatty acid	FA	Media	n of sample a	inalysis pro	file data reporte	d based on C	18:2, in wt. %	а
Common name	Shorthand	Soybean	Corn	Canola	Cottonseed	Palm	Tallow	Larc
Caprylic	C8:0					0.186		
Capric	C10:0					0.324		0.070
Lauric	C12:0					2.284	1.010	
Myristic	C14:0	0.100		0.040	0.860	1.108	3.384	1.280
Myristoleic	C14:1							
Pentadecanoic	C15:0							
Palmitic	C16:0	11.000	12.860	4.248	23.600	41.480	24.495	25.000
Palmitoleic	C16:1	0.100	0.100	0.287	0.360	0.167	4.040	3.000
Margaric	C17:0			0.069		0.059	2.020	0.330
Stearic	C18:0	4.000	1.760	1.752	2.400	4.186	17.525	12.540
Oleic	C18:1	23.400	26.950	60.752	17.740	39.706	42.121	44.000
Linoleic	C18:2	53.200	55.880	20.713	54.420	9.902	3.293	11.000
Linolenic	C18:3	7.800	1.260	8.980	0.600	0.196	1.818	0.550
Stearidonic	C18:4							
Arachidic	C20:0	0.300	0.390	0.713	0.220	0.304	0.313	0.190
Gondoic	C20:1		0.280	1.277	0.070	0.078	0.081	0.800
Eicosadienoic	C20:2							0.740
Homo-y-linoleic	C20:3							0.110
Arachidonic	C20:4							0.300
Eicosapentaenoic	C20:5							
Henicosanoic	C21:0							
Heneicosapentaenoic	C21:5							
Behenic	C22:0	0.100	0.120	0.307	0.110	0.039		
Erucic	C22:1			0.594				
Docosadienoic	C22:2							
Docosatetraenoic	C22:4		0.120					
Docosapentaenoic	C22:5		0.180					
Docosahexaenoic	C22:6							
Lignoceric	C24:0			0.099		0.049		
Tetracosenoic	C24:1							
Whole feed FAs	O2 wt. %	11.50	11.50	11.35	11.71	11.99	11.80	11.66
Deoxygenatio	on (kg H_2 /b)	4.11	4.11	4.06	4.14	4.19	4.11	4.13
	on (kg H_2 /b)	1.58	1.48	1.35	1.32	0.61	0.60	0.76
C8–C16 Fraction	(vol. %)	11.71	13.56	4.78	25.67	46.47	33.34	30.00
Deoxygenatio	on (kg H_2 /b)	4.27	4.26	4.28	4.28	4.38	4.39	4.32
Saturatio	on (kg H ₂ /b)	0.01	0.01	0.07	0.02	0.004	0.14	0.12
C15–C18 Fraction	(vol. %)	99.46	98.88	96.85	98.70	95.63	95.18	96.53
Deoxygenatio	on (kg H_2 /b)	4.11	4.11	4.08	4.13	4.13	4.08	4.09
Saturatio	on (kg H ₂ /b)	1.59	1.48	1.37	1.34	0.64	0.63	0.75
> C18 Fraction	(vol. %)	0.43	1.12	3.11	0.42	0.49	0.41	2.10
Deoxygenatio		3.31	3.49	3.43	3.35	3.37	3.43	3.70
Saturatio	on (kg H_2 /b)	0.00	1.38	0.55	0.16	0.15	0.19	1.68

Table 8. Data and methods table for feed-specific estimates continued.^a

Fatty acid FA			Median of samp	le analysis pro	ofile data reporter	d based on C18-7	2. wt. % °
Common name	Shorthand	Poultry	Anchovy	Herring	Menhaden	Salmon	Tuna
Caprylic	C8:0	1 Guilty	Anchovy	Tierring	Wieffindueff	Samon	T GIL
Capric	C10:0						
Lauric	C12:0						
Myristic	C14:0	0.618	6.636	7.755	8.602	6.044	5.903
Myristoleic	C14:1	0.206					0.447
Pentadecanoic	C15:0		0.701	0.408	0.538	0.769	0.359
Palmitic	C16:0	24.206	16.355	15.306	21.505	17.143	17.670
Palmitoleic	C16:1	6.951	7.757	8.469	10.108	2.198	5.961
Margaric	C17:0	0.108	0.935	0.510	1.075	1.099	0.650
Stearic	C18:0	5.814	3.738	2.143	3.333	2.637	4.155
Oleic	C18:1	42.157	12.150	17.245	15.000	15.385	16.078
Linoleic	C18:2	18.137	1.636	1.633	2.151	1.648	1.068
Linolenic	C18:3	0.657	5.607	0.612	1.398	4.451	1.748
Stearidonic	C18:4	0.057	2.336	2.551	3.333	3.077	1.740
Arachidic	C20:0		0.841	2.331	0.323	0.385	0.408
Gondoic	C20:0	0.392	3.738	11.224	1.075	1.978	4.922
Eicosadienoic	C20:1	0.352	5.750	11.224	1.075	1.578	0.272
Homo-y-linoleic	C20:2						3.437
Arachidonic	C20:3		2.103	0.408	1.720	2.967	0.184
Eicosapentaenoic	C20:4		14.486	8.776	13.441	12.637	9.282
Henicosanoic	C21:0		14.400	8.770	13.441	12.037	5.202
Heneicosapentaenoic	C21:5		1.869		0.806	2.582	
Behenic	C22:0	0.118	1.005		0.800	2.502	0.078
Erucic	C22:0	0.098	3.224	15.102	0.645	6.099	0.311
Docosadienoic	C22:2	0.050	5.224	15.102	0.045	0.055	0.511
Docosatetraenoic	C22:4						
Docosapentaenoic	C22:5		1.869	1.327	2.258	3.077	5.252
Docosahexaenoic	C22:6		14.252	6.327	12.366	15.385	20.670
Lignoceric	C24:0	0.098	14.252	0.527	12.500	13.305	0.845
Tetracosenoic	C24:0	0.363					0.583
Whole feed FAs	02 wt. %	11.70	11.33	11.22	11.53	11.11	11.20
	ion (kg H_2 /b)	4.13	4.06	3.99	4.13	4.01	4.01
	ion (kg H_2/b)	0.91	2.34	1.52	2.08	2.42	2.31
C8–C16 Fraction	(vol. %)	32.69	32.56	32.73	42.26	27.48	31.46
	ion (kg H_2 /b)	4.33	4.45	4.47	4.45	4.42	4.44
	ion (kg H_2 /b)	0.25	0.28	0.30	0.28	0.09	0.24
C15–C18 Fraction	(vol. %)	98.09	52.19	49.34	59.81	49.73	48.92
	ion (kg H_2 /b)	4.13	4.20	4.20	4.21	4.17	4.17
	ion (kg H_2 /b)	0.92	1.02	0.89	0.85	1.01	0.64
> C18 Fraction	(vol. %)	1.07	40.93	42.68	31.25	43.96	44.52
Deoxygenat	ion (kg H_2 /b)	3.31	3.76	3.59	3.81	3.72	3.72
Saturat	ion (kg H_2 /b)	0.67	4.31	2.52	4.83	4.27	4.34

Table 8. Data and methods table for feed-specific estimates continued.^a

Whole feed fatty acids		Used cooking oil (UCO) variability							
Fatty acid	FA	Percentiles on C18:2, in wt. % *							
Common name	Shorthand	10 th Percentile	25 th Percentile	75 th Percentile	90 th Percentile				
Caprylic	C8:0								
Capric	C10:0								
Lauric	C12:0								
Myristic	C14:0	0.909	2.479	1.735					
Myristoleic	C14:1								
Pentadecanoic	C15:0								
Palmitic	C16:0	20.606	20.248	16.412	12.420				
Palmitoleic	C16:1	4.646		1.735					
Margaric	C17:0								
Stearic	C18:0	4.848	12.810	5.235	5.760				
Dleic	C18:1	53.434	38.017	29.843	26.930				
Linoleic	C18:2	13.636	23.967	41.324	49.600				
inolenic	C18:3	0.808	2.066	3.500	4.930				
Stearidonic	C18:4								
Arachidic	C20:0	0.121			0.750				
Gondoic	C20:1	0.848							
Eicosadienoic	C20:2								
Homo-y-linoleic	C20:3								
Arachidonic	C20:4								
icosapentaenoic	C20:5								
lenicosanoic	C21:0								
leneicosapentaenoic	C21:5								
Behenic	C22:0	0.030							
Erucic	C22:1	0.071							
Docosadienoic	C22:2								
Docosatetraenoic	C22:4								
Docosapentaenoic	C22:5								
Docosahexaenoic	C22:6								
lignoceric	C24:0	0.040							
letra cosenoic	C24:1								
Whole feed FAs	O2 wt. %	11.64	11.59	11.59	11.55				
Deoxygen	ation (kg H_2 /b)	4.11	4.09	4.12	4.10				
Satur	ation (kg H_2 /b)	0.91	0.95	1.29	1.44				
C8-C16 Fraction	(vol. %)		23.49	20.61	12.90				
Deoxygen	ation (kg H_2 /b)	4.32	4.32	4.33	4.26				
	ation (kg H ₂ /b)		0.00	0.10	0.09				
C15-C18 Fraction	(vol. %)		97.46	98.21	99.19				
	ation (kg H ₂ /b)		4.08	4.11	4.10				
	ation (kg H_2 /b)		0.97	1.31	1.46				
> C18 Fraction	(vol. %)		0.00	0.00	0.81				
	ation (kg H_2 /b)		0.00	0.00	3.38				
Satur	ation (kg H_2 /b)	0.75	0.00	0.00	0.00				

Table 8. Data and methods table for feed-specific estimates continued.^a

Table 8. Data and methods table for feed-specific estimates continued.^a

Data for feedstock fractions outside the jet fuel range (> C16)

Feedstock		Soybean	Corn	Canola	Cottonseed	Palm	Tallow	Lard
> C16 Fraction	(vol. %)	88.29	86.44	95.22	74.33	53.53	66.66	70.00
Deoxygenation (kg H ₂ /b)		4.09	4.08	4.05	4.09	4.03	3.98	4.00
Saturation (kg H_2 /b)		1.78	1.70	1.41	1.75	1.12	0.82	1.03

Feedstock		Poultry	Anchovy	Herring	Menhaden	Salmon	Tuna
> C16 Fraction	(vol. %)	67.31	67.44	67.27	57.74	72.52	68.54
Deoxygenation (kg H_2 /b)		4.03	3.88	3.76	3.92	3.86	3.82
Saturation (kg H_2 /b)		1.22	3.29	2.10	3.33	3.25	3.21

Feedstock		Used Cooking C	il (UCO		
Percentile on C18:2 in wt.%		10th	25th	75th	90th
> C16 Fraction	(vol. %)	73.19	76.51	79.39	87.10
Deoxygenation (kg H_2 /b)		4.03	4.03	4.07	4.07
Saturati	on (kg H ₂ /b)	1.16	1.23	1.58	1.65

Table 8. Data and methods table for feed-specific estimates continued.^a

HDO & ONLY	Jet	range (C8-	C16)	Diese	l range (C1	5–C18)	Lon	ger chains (>	C18)
(No-IHC)	(vol.%)	Ox (kg/b)	Sat (kg/b)	(vol.%)	Ox (kg/b)	Sat (kg/b)	(vol.%)	Ox (kg/b)	Sat (kg/b)
High jet/high diesel									
Palm oil	46.47	4.38	0.004	95.63	4.13	0.64	0.49	3.37	0.15
Tallow fat	33.34	4.39	0.14	95.18	4.08	0.63	0.41	3.43	0.19
Poultry fat	32.69	4.33	0.25	98.09	4.13	0.92	1.07	3.31	0.67
Lard fat	30.00	4.32	0.12	96.53	4.09	0.75	2.10	3.70	1.68
UCO 10th P.	26.81	4.32	0.20	97.95	4.11	0.92	1.12	3.56	0.75
Cottonseed oil	25.67	4.28	0.02	98.70	4.13	1.34	0.42	3.35	0.16
High jet/low diesel									
Menhaden oil	42.26	4.45	0.28	59.81	4.21	0.85	31.25	3.81	4.83
Herring oil	32.73	4.47	0.30	49.34	4.20	0.89	42.68	3.59	2.52
Anchovy oil	32.56	4.45	0.28	52.19	4.20	1.02	40.93	3.76	4.31
Tuna oil	31.46	4.44	0.24	48.92	4.17	0.64	44.52	3.72	4.34
Salmon oil	27.48	4.42	0.09	49.73	4.17	1.01	43.96	3.72	4.27
Low jet/high diesel									
Corn (DCO) oil	13.56	4.26	0.01	98.88	4.11	1.48	1.12	3.49	1.38
UCO 90th P.	12.90	4.26	0.09	99.19	4.10	1.46	0.81	3.38	0.00
Soybean oil	11.71	4.27	0.01	99.46	4.11	1.59	0.43	3.31	0.00
Canola oil	4.78	4.28	0.07	96.85	4.08	1.37	3.11	3.43	0.55

Process hydrogen consumption by feedstock and processing strategy (kg/b feed)

HDO & INTENTIONAL	HDO Δ (Ox + Sat)			Intentiona	I Hydrocrad	king (IHC)	Jet target H2 Δ by processing case			
HYDROCRACKING	Jet rg.	Diesel rg.	> C18	Selecti	ve-IHC	Isom IHC	No-IHC	Select-IHC	Isom-IHC	
vol. weighted data	(kg/b)	(kg/b)	(kg/b)	(b fraction)	(kg/b)	(kg/b)	(kg/b)	(kg/b)	(kg/b)	
High jet/high diesel	—frac	tions do not	add—	> C16	(factor)*	(factor)*	whole feed	whole feed	whole feed	
Palm oil	2.04	4.57	0.02	0.535	1.87	1.80	4.79	5.79	6.60	
Tallow fat	1.51	4.47	0.01	0.667	2.10	1.99	4.71	6.11	6.70	
Poultry fat	1.50	4.95	0.04	0.673	1.85	1.82	5.03	6.28	6.85	
Lard fat	1.33	4.67	0.11	0.700	1.84	1.81	4.85	6.13	6.65	
UCO 10th P.	1.21	4.92	0.05	0.732	1.85	1.82	5.01	6.37	6.83	
Cottonseed oil	1.10	5.40	0.01	0.743	1.88	1.84	5.44	6.84	7.28	
High jet/low diesel										
Menhaden oil	2.00	3.03	2.70	0.577	1.93	1.84	6.18	7.30	8.02	
Herring oil	1.56	2.51	2.61	0.673	1.87	1.83	5.50	6.76	7.33	
Anchovy oil	1.54	2.72	3.30	0.674	1.93	1.86	6.37	7.67	8.23	
Tuna oil	1.47	2.35	3.59	0.685	1.94	1.87	6.29	7.62	8.16	
Salmon oil	1.24	2.57	3.51	0.725	1.91	1.85	6.40	7.78	8.25	
Low jet/high diesel										
Corn (DCO) oil	0.58	5.53	0.05	0.864	1.86	1.84	5.58	7.19	7.42	
UCO 90th P.	0.56	5.51	0.03	0.871	1.87	1.84	5.55	7.17	7.39	
Soybean oil	0.50	5.67	0.01	0.883	1.86	1.84	5.68	7.33	7.52	
Canola oil	0.21	5.28	0.12	0.952	1.85	1.84	5.40	7.16	7.24	

Note: H₂ inputs shown exclude side-reaction cracking, solubilization, scrubbing and purge gas losses.

* IHC $\rm H_2$ consumption at 1.3 wt. % feed (Pearlson et al.), in kg/b IHC input.

See table notes next page

Explanatory notes and data sources for Table 8.

Feeds shown have been processed in the U.S. except for palm oil, which is included because it is affected indirectly by U.S. feedstock demand and could be processed in the future, possibly in the U.S. and more likely for fueling international flights in various nations. Median values shown for feed composition were based on the median of the data cluster centered by the median value for C18:2 (linoleic acid) for each individual whole feed. Blend data were not available for used cooking oil (UCO), except in the form of variability among UCO samples collected, which showed UCO to be uniquely variable in terms of HEFA processing characteristics. The table reports UCO data as percentiles of the UCO sample distribution.

Data for feedstock composition were taken from the following sources:

```
Soybean oil<sup>54 55 61 62 63 64 65 66</sup>
Corn oil (distillers corn oil)<sup>54 61 63 65 67 68 69 70</sup>
Canola oil (includes rapeseed oil)<sup>54 55 61-65 67 69 71 72 73</sup>
Cottonseed oil<sup>54 55 63 65 67</sup>
Palm oil<sup>54 55 62-65 67 68 74</sup>
Tallow (predominantly beef fat)<sup>54 64 69 71 75 76 77 78 79</sup>
Lard (pork fat)<sup>68 76 79</sup>
Poultry fat<sup>54 69 76 79 80</sup>
Anchovy<sup>81</sup>
Herring<sup>82 83</sup>
Menhaden<sup>54 81 82</sup>
Salmon<sup>81 83</sup>
Tuna<sup>81 84 85</sup>
```

```
Used cooking oil (UCO)<sup>74 78 86 87 88 89 90 91 92</sup>
```

Hydrogen consumption to deoxygenate and saturate feeds was calculated from fatty acids composition data for each feed and feed fraction shown. Note that O_2 wt.% data shown are for fatty acids excluding the triacylglycerol propane knuckle; O_2 molar data rather than wt.% data were used to calculate hydrogen demand. Added hydrogen consumption by intentional hydrocracking was calculated at 1.3 wt.% on feed from Pearlson et al.³ and the inputs to each intentional hydrocracking strategy type (Chapter 1), which were taken from the data in Table 8 and used as shown at the end of Table 8 above. Selective-IHC input volume differs among feeds, as described in chapters 1–3.

Hydrogen losses to side-reaction cracking, solubilization in process fluids, and scrubbing and purging of process gases (not shown in Table 8) result in additional hydrogen production, and thus steam reforming emissions. This was addressed for the steam reforming emissions illustrated in Chart 1 by adding 2.5 kg CO_2/b feed to the emissions shown in Table 5, based on steam reforming emissions of 9.82 g CO_2/g H₂ (Chapter 3) and assumed additional hydrogen production of 0.26 kg H₂/b feed. This is a conservative assumption for hydrogen which reflects a lower bound estimate for those losses. Hydrogen losses through side-reaction cracking, solubilization, scrubbing and purging combined would likely range from 102 SCFB (0.26 kg/b) to more than 196 SCFB (0.5 kg/b),² based on analysis of data from a range of published HEFA processing and petroleum processing hydro-conversion process analyses and professional judgment.^{2 4 50–56 93 94 95 96}

UNSUSTAINABLE AVIATION FUEL

References

¹ Data and Methods Table for Feed-specific Estimates (Table 8). Annotated table giving feed-specific data, data sources and analysis methods. Table 8 appears on pages 37–43 above.

² NRDC, 2021. *Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-tobiofuel petroleum refinery repurposing;* Natural Resources Defense Council: Washington, D.C. Prepared for the NRDC by Greg Karras, G. Karras Consulting [Needs Link: NRDC link or www.energy-resource.com??? OR "in press"?]

³ Pearlson et al., 2013. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. *Biofuels, Bioprod. Bioref.* 7: 89–96. DOI: 10.1002/bbb, 1378.

⁴ Robinson and Dolbear, 2007. Commercial Hydrotreating and Hydrocracking. *In:* Hydroprocessing of heavy oils and residua. Ancheyta, J., and Speight, J., eds. CRC Press, Taylor & Francis Group: Boca Raton, FL. ISBN-13: 978-0-8493-7419-7.

⁵ 2021 Worldwide Refining Survey; Oil & Gas Journal. Capacity data by refinery; includes hydrogen capacities of U.S. refineries as of Dec 2020 (U.S. total refinery hydrogen capacity of 3,578.3 MM cfd converted to MM t/y by the author based on 89.9 kg H2/m3). Accessed Jul 2021 from OGJ website: https://www.ogj.com/ogj-survey-downloads/worldwide-refining/document/14195563/worldwide-us-refinery-surveycapacities-as-of-jan-1-2021

⁶ *Refining Industry Energy Consumption;* table *in* Annual Energy Outlook. U.S. Energy Information Administration: Washington, D.C. CO₂ emissions from total refining industry energy consumption and inputs to distillation units; 2015: 35-AEO2017.4.ref2017-d120816a and 35-AEO2017.25.ref2017-d120816a; 2016: 35-AEO2018.25.ref2018-d121317a and 35-AEO2018.25.ref2018-d121317a; 2017: 35-AEO2019.25.ref2019-d111618a and 35-AEO2019.4.ref2019-d111618a. Data are from the most recent years for which baseline actual data were available as accessed Jul 2021; https://www.eia.gov/outlooks/aeo/data/browser

⁷ Karras, 2010. Combustion Emissions from Refining Lower Quality Oil: What Is the Global Warming Potential? *Environ. Sci. Technol.* 44(24): 9584–9589. *See esp.* Supporting Information, Table S1. https://pubs.acs.org/doi/10.1021/es1019965

⁸ Crude Oil Input Qualities; U.S. Energy Information Administration: Washington, D.C. Accessed Jul 2021 from <u>https://www.eia.gov/dnav/pet/pet_pnp_crq_dcu_nus_a.htm</u>

⁹ Perlack and Stokes, 2011. U.S. Billion-Ton Update: Biomass Supply for Bioenergy and Bioproducts Industry. U.S. Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN. ORNL/TM-2011/224.

¹⁰ 2020 The State of World Fisheries and Aquaculture. Sustainability in action; Food and Agriculture Organization of the United Nations: Rome. 2020. https://doi.org/10.4060/ca9229en http://www.fao.org/documents/card/en/c/ca9229en

¹¹ Searchinger et al., 2008. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change. *Science* 319 (5867): 1238-1240. DOI: 10.1126/Science.1151861. https://science.sciencemag.org/content/319/5867/1238

¹² Sanders et al., 2012. *Revisiting the Palm Oil Boom in Southeast Asia;* International Food Policy Research Institute; <u>www.ifpri.org/publication/revisiting-palm-oil-boom-southeast-asia-role-fuel-versus-food-demand-drivers.</u>

¹³ Union of Concerned Scientists USA, 2015. *Soybeans*; <u>www.ucsusa.org/resources/soybeans</u>

¹⁴ Lenfert et al., 2017. *ZEF Policy Brief No. 28;* Center for Development Research, University of Bonn; www.zef.de/fileadmin/user_upload/Policy_brief_28_en.pdf

¹⁵ Nepstad and Shimada, 2018. *Soybeans in the Brazilian Amazon and the Case Study of the Brazilian Soy Moratorium;* Int. Bank for Reconstruction and Development / The World Bank: Washington, D.C. www.profor.info/sites/profor.info/files/Soybeans%20Case%20Study_LEAVES_____

<u>2018.pdf</u>

¹⁶ Santeramo, F., 2017. *Cross-Price Elasticities for Oils and Fats in the US and the EU;* The International Council on Clean Transportation: Beijing, Berlin, Brussels, San Francisco and Washington, D.C. (The ICCT); <u>www.theicct.org/sites/default/files/publications/Cross-price-elasticities-for-oils-fats-US-EU_ICCT_consultant-report_06032017.pdf</u>

¹⁷ Searle, 2017. *How rapeseed and soy biodiesel drive oil palm expansion;* Briefing. The International Council on Clean Transportation: Beijing, Berlin, Brussels, San Francisco and Washington, D.C. (The ICCT); <u>https://theicct.org/publications/how-rapeseed-and-soy-biodiesel-drive-oil-palm-expansion</u>

¹⁸ Takriti et al., 2017. *Mitigating International Aviation Emissions: Risks and opportunities for alternative jet fuels;* The ICCT; <u>https://theicct.org/publications/mitigating-international-aviation-emissions-risks-and-opportunities-alternative-jet</u>

¹⁹ Wang et al., 2016, *Review of Biojet Fuel Conversion Technologies;* NREL/TP-5100-66291. Contract No. DE-AC36-08GO28308. National Renewable Energy Laboratory: Golden, CO. https://www.nrel.gov/docs/fy16osti/66291.pdf

²⁰ See U.S. Environmental Protection Agency, 2016. Lifecycle Greenhouse Gas Results; Overview for Renewable Fuel Standard; and Approved Pathways for Renewable Fuel (palm oil derived hydrotreated diesel does not meet renewable fuel threshold, no approved renewable fuel pathway); https://www.epa.gov/fuels-registration-reporting-and-compliance-help/lifecycle-greenhouse-gas-results https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard https://www.epa.gov/renewable-fuel-standard-program/approved-pathways-renewable-fuel

²¹ Gatti et al., 2021. Amazonia as a carbon source linked to deforestation and climate change. *Nature* 595: 388–393. <u>https://doi.org/10.1038/s41586-021-03629-6</u>

²² Nickle et al., 2021. Renewable diesel boom highlights challenges in clean-energy transition. 3 Mar 2021. *Reuters*. <u>https://www.reuters.com/article/us-global-oil-biofuels-insight-idUSKBN2AV1BS</u>

²³ Walljasper, 2021. GRAINS–Soybeans extend gains for fourth session on veg oil rally; corn mixed. 24 Mar 2021. *Reuters*. <u>https://www.reuters.com/article/global-grains-idUSL1N2LM2O8</u>

²⁴ Kelly, 2021. U.S. renewable fuels market could face feedstock deficit. 8 Apr 2021. *Reuters*. <u>https://www.reuters.com/article/us-usa-energy-feedstocks-graphic/us-renewable-fuels-market-could-face-feedstock-deficit-idUSKBN2BW0EO</u>

²⁵ Portner et al., 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. IPBES and IPCC. DOI: 10.5281/zenodo.4782538. <u>https://www.ipbes.net/events/launch-ipbes-ipcc-co-sponsored-workshop-report-biodiversity-and-climate-change</u>

²⁶ Diaz et al., 2019. Global Assessment Report on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPDES): Bonn, DE. <u>https://ipbes.net/global-assessment</u>

²⁷ Battisti and Naylor, 2009. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. *Science* 323: 240–244. DOI: 10.1126/science.1164363. https://science.sciencemag.org/content/323/5911/240

²⁸ Wheeler and von Braun, 2013. Climate Change Impacts on Global Food Security. *Science* 341: 508–513. DOI: 10.1126/science.1239402. <u>https://science.sciencemag.org/content/341/6145/508/tab-pdf</u>

²⁹ *How much water is there on, in, and above the Earth?* U.S. Geological Survey: Washington, D.C. <u>https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth</u>

³⁰ Passow and Carlson, 2012. The biological pump in a high CO₂ world. *Marine Ecology Progress Series* 470: 249–271. DOI: 10.3354/meps09985. <u>https://www.int-res.com/abstracts/meps/v470/p249-271</u>

³¹ Mariani et al., 2020. Let more big fish sink: Fisheries prevent blue carbon sequestration—half in unprofitable areas. *Science Advances* 6(44): eabb4848. <u>https://doi.org/10.1126/sciadv.abb4848</u>

³² Trueman et al., 2014. Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes. *Proc. R. Soc. B* **281**: 20140669. http://dx.doi.org/10.1098/rspb.2014.0669. <u>https://royalsocietypublishing.org/doi/10.1098/rspb.2014.0669</u>

³³ Low Carbon Fuel Standard Regulation, Title 17, California Code of Regulations, sections 95480– 95503; <u>see</u> esp. § 95488.8(g)(1)(A) and Table 8.

³⁴ *LCFS Pathway Certified Carbon Intensities;* California Air Resources Board: Sacramento, CA. <u>See</u> Current Fuel Pathways spreadsheet under "Fuel Pathway Table," accessed 26 June 2021 at <u>https://ww2.arb.ca.gov/resources/documents/lcfs-pathway-certified-carbon-intensities</u>

³⁵ *Renewable Hydrocarbon Biofuels;* Alternative Fuels Data Center, U.S. Energy Information Administration: Washington, D.C. <u>https://afdc.energy.gov/fuels/emerging_hydrocarbon.html</u>

³⁶ U.S. Supply and Disposition; U.S. Product Supplied of Kerosene-type Jet Fuel; U.S. Energy Information Administration: Washington, D.C. http://www.eia.gov/dnav/pet/pet_sum_snd_d_nus_mbbl_m_cur.htm

³⁷ Share of Liquid Biofuels Produced In-State by Volume; Figure 10 in Low Carbon Fuel Standard Data Dashboard. California Air Resources Board: Sacramento, CA. https://ww3.arb.ca.gov/fuels/lcfs/dashboard/dashboard.htm

³⁸ Schremp (2020). Transportation Fuels Trends, Jet Fuel Overview, Fuel Market Changes & Potential Refinery Closure Impacts. BAAQMD Board of Directors Special Meeting, May 5, 2021, G. Schremp, Energy Assessments Division, California Energy Commission. *In* Board Agenda Presentations Package; <u>https://www.baaqmd.gov/-/media/files/board-of-directors/2021/bods_presentations_050521_revised_op-pdf.pdf?la=en</u>

³⁹ Williams et al., 2012. The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity. *Science* 53–59. <u>https://doi.org/DOI: 10.1126/science.1208365</u>

⁴⁰ Williams et al., 2015. *Pathways to Deep Decarbonization in the United States;* The U.S. report of the Deep Decarbonization Pathways Project of the Sustainable Development Solutions Network and the Institute of Sustainable Development and International Relations. Revision with technical supp. Energy and Environmental Economics, Inc., in collaboration with Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory. https://usddpp.org/downloads/2014-technical-report.pdf

⁴¹ Williams et al., 2021. Carbon-Neutral Pathways for the United States. *AGU Advances* 2, e2020AV000284. <u>https://doi.org/10.1029/2020AV000284</u>

⁴² Mahone et al., 2020. Achieving Carbon Neutrality in California: PATHWAYS Scenarios Developed for the California Air Resources Board, DRAFT: August 2020; Energy and Environmental Economics, Inc.: San Francisco, CA. <u>https://ww2.arb.ca.gov/sites/default/files/2020-08/e3_cn_draft_report_aug2020.pdf</u>

⁴³ Edwards, 2020. *Jet Fuel Properties;* AFRL-RQ-WP-TR-2020-0017. Fuels & Energy Branch, Turbine Engine Division, Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, OH, Air Force Materiel Command, U.S. Air Force.

⁴⁴ Oilseeds: World Markets and Trade. Table 42–World vegetable oils supply and distribution, 2013/14– 2020/21; Economic Research Service, U.S. Department of Agriculture, using data from USDA, Foreign Agriculture Service. 26 Mar 2021.

www.ers.usda.gov/webdocs/DataFiles/52218/WorldSupplyUseOilseedandProducts.xlsx?v=5141.3

⁴⁵ *Processed Products–FUS Groups;* data for product type and group 2 name "oil" from NOAA data base. National Oceanographic and Atmospheric Administration. Accessed 13 Jul 2021. https://www.fisheries.noaa.gov/foss/f?p=215:3:10607827382328::NO:::

⁴⁶ Food and Agriculture Organization of the United Nations (FAO) fishery information resource detail, accessed 13 Jul 2021. <u>http://www.fao.org/in-action/globefish/fishery-information/resource-detail/en/c/338773</u>

⁴⁷ *World Data Atlas;* world tallow and lard production in 2018. Accessed 13 Jul 2021. https://knoema.com/data/agriculture-indicators-production+tallow

⁴⁸ U.S. Department of Agriculture *Oil Crops Data: Yearbook Tables; See* tables 5, 20, 26, and 33. <u>https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-yearbook//#All%20Tables.xlsx?v=7477.4</u>.

⁴⁹ Gerber et al., 2013. *Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities;* Food and Agriculture Organization of the United Nations: Rome. E-ISBN 978-92-5-107921-8 (PDF). <u>http://www.fao.org/news/story/en/item/197623/icode</u>

⁵⁰ Maki-Arvela et al. Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. *Catalysts* (**2018**) 8: 534. DOI: 10.3390/catal8110534

⁵¹ Parmar et al. Hydroisomerization of *n*-hexadecane over Brønsted acid site tailored Pt/ZSM-12. *J Porous Mater* (2014). DOI: 10.1007/s10934-014-9834-3

⁵² Douvartzides et al. Green Diesel: Biomass Feedstocks, Production Technologies, Catalystic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. *Energies* (2019) 12: 809.

⁵³ Regali et al. Hydroconversion of *n*-hexadecane on Pt/silica-alumina catalysts: Effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. *Applied Catalysis* (**2014**) A: General 469: 328. http://dx.doi.org/10.1016/j.apcata.2013.09.048.

⁵⁴ Satyarthi et al. An overview of catalytic conversion of vegetable oils/fats into middle distillates. *Catal. Sci. Technol.* (2013) 3:70. DOI: 10.1039/c2cy20415k. See p. 75.

⁵⁵ Zhao et al., 2017. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Fuels. *Catalysts* 7: 83. DOI: 10.3390/catal7030083. www.mdpi.com/journal/catalysts.

⁵⁶ Tirado et al., 2018. Kinetic and Reactor Modeling of Catalytic Hydrotreatment of Vegetable Oils. *Energy & Fuels* 32: 7245–7261. DOI: 10.1021/acs.energyfuels.8b00947.

⁵⁷ Mahone et al., 2018. *Deep Decarbonization in a High Renewables Future: Updated results from the California PATHWAYS Model;* Report CEC-500-2018-012. Contract No. EPC-14-069. Prepared for California Energy Commission. Final Project Report. Energy and Environmental Economics, Inc.: San Francisco, CA. <u>https://ww2.energy.ca.gov/2018publications/CEC-500-2018-012/CEC-500-2018-012.pdf</u>

⁵⁸ Austin et al., 2021. *Driving California's Transportation Emissions to Zero;* Report No.: UC-ITS-2020-65. Institute of Transportation Studies, University of California. DOI: 10.7922/G2MC8X9X. <u>https://escholarship.org/uc/item/3np3p2t0</u>

⁵⁹ Fact Sheet 2: Sustainable Aviation Fuel: Technical Certification; International Air Transport Association (IATA): Montreal, CA. Accessed Aug 2021 from https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/saf-technical-certifications.pdf

UNSUSTAINABLE AVIATION FUEL

⁶⁰ <u>See</u> "Inherent Safety Measure" requirements to "eliminate hazards to the greatest extent feasible" in California Code of Regulations §§ 5189.1 (c), (*l*) (4) (D), and (*l*) (4) (D).

⁶¹ Tulcan et al., 2008. Analysis of Physical Characteristics of Vegetable Oils. CIGR–International Conference of Agricultural Engineering, Brazil, 31 Aug–4 Sep 2008. https://www.osti.gov/etdeweb/servlets/purl/21512209.

⁶² Han et al., 2013. *Bioresource Technology* 150: 447–456. http://dx.doi.org/10.1016/j.biortech.2013.07.153.

⁶³ Giakoumis, 2018. *Renewable Energy* Vol. 126: 403–419. www.sciencedirect.com/science/article/abs/pii/S0960148118303689.

⁶⁴ Phillips, 2019. Implications of Imported Used Cooking Oil as a Biodiesel Feedstock. NNFCC: Heslington, NY.

⁶⁵ Canale et al., 2005. *Int. J. Materials and Product Technology* 24(1–4): 101–125. https://www.inderscience.com/info/inarticle.php?artid=7943.

⁶⁶ Wang, 2002. *In* Gunstone, ed., Vegetable Oils in Food Technology. Blackwell: Oxford, UK.

⁶⁷ Gunstone, ed., Vegetable Oils in Food Technology. Blackwell: Oxford, UK. 2002.

⁶⁸ After Lindblom, S.C., Dozier, W.A. III, Shurson, G.C., and Kerr, B.J. 2017. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids. J. Anim. Sci. 95: 239-247.

⁶⁹ Shurson et al., 2015. *Journal of Animal Science and Biotechnology* 6:10. DOI: 10.1186/s40104-015-0005-4.

⁷⁰ Kerr et al., 2016. J. Anim. Sci. 94: 2900–2908. doi: 10.2527/jas2016-0440.

⁷¹ Altun et al., 2010. Int. Journal of Engineering Research and Development Vol. 2, No. 2.

⁷² Vingering et al., 2020. *OCL* Vol. 17N° 3 MAI-JUIN 2020. doi: 10.1684/ocl.2010.0309. http://www.ocl-journal.org http://dx.doi.org/10.1051/ocl.2010.0309.

73 Orsavova et al., 2015. Int. J. Mol. Sci. 16: 12871–12890. doi: 10.3390/ijms160612871.

⁷⁴ Awogbemi et al, 2019. *International Journal of Low-Carbon Technologies* 12: 417–425. doi: 10.1093/ijlct/ctz038.

⁷⁵ Rezaei and Azizinejad, 2013. Journal of Food Biosciences and Technology 3.

⁷⁶ Bitman, 1976. *In* Fat Content and Composition of Animal Products: Proceedings of a Symposium. National Academy of Sciences; https://doi.org/10.17226/22.

⁷⁷ Application B0079, Kern Oil & Refining. GREET Pathway for the Production of Renewable Diesel from Animal Tallow. Submitted to Cal. Air Res. Board 31 March 2020.

⁷⁸ Pocket Information Manual, A Buyer's Guide to Rendered Products, National Renderers Association, Inc.: Alexandria, VA. 2003. www.renderers.org. Table e.

⁷⁹ Adapted from Gunstone, F. 1996. Fatty Acid and Lipid Chemistry. Blackie: London, UK.

⁸⁰ Chicken Fat; Fatty Acid Profile. In Material Safety Data Sheet: Chicken Fat. Darling Ingredients Inc.: Irving, TX. Date Prepared: 10 July 2012.

⁸¹ Xie et al., 2019. *Comprehensive Reviews in Food Science and Food Safety* Vol. 18. DOI: 10.1111/1541-4337.12427.

⁸² Gruger, E, 1967. Fatty Acid Composition of Fish Oils. U.S. Dept. of Interior, Fish and Wildlife Service, Bureau of Commercial Fisheries: Washington, D.C. https://spo.nmfs.noaa.gov/content/circular-276-fatty-acid-composition-fish-oils.

⁸³ Moffat and McGill, Ministry of Agriculture, Fisheries and Food: Torry Research Station, Aberdeen AB9 8DG. 1993. Variability of the composition of fish oils: significance for the diet. *Proceedings of the Nutrition Society* 52: 441–456. Printed in Great Britain. *After* Ackman and Eaton, 1966; Jangaard et al., 1967.

⁸⁴ Suseno et al., 2014. Fatty Acid Composition of Some Potential Fish Oil from Production Centers in Indonesia. *Oriental Journal of Chemistry* 30(3): 975–980. http://dx.doi.org/10.13005/ojc/300308.

⁸⁵ Simat et al., 2019. Production and Refinement of Omega-3 Rich Oils from Processing By-Products of Farmed Fish Species. *Foods* 8(125). doi: 10.3390/foods8040125.

⁸⁶ EUBIA, *after* Wen et al., 2010. http://www.eubia.org/cms/wiki-biomass/biomass-resources/challenges-related-to-biomass/used-cooking-oil-recycling.

⁸⁷ Knothe and Steidly, 2009. *Bioresource Technology* 100: 5796–5801. doi: 10.1016/j.biortech.2008.11.064.

⁸⁸ Banani et al., 2015. *J. Mater. Environ. Sci.* 6(4): 1178–1185. ISSN: 2028–2508. CODEN: JMESCN. http://www.jmaterenvironsci.com.

⁸⁹ Chhetri et al., 2008. *Energies* 1: 3–8. ISSN 1996-1073. www.mdpi.org/energies. DOI: 10.3390/en1010003.

⁹⁰ Yusuff et al., 2018. Waste Frying Oil as a Feedstock for Biodiesel Production. IntechOpen http://dx.doi.org/10.5772/intechopen.79433.

⁹¹ Mannu et al., 2019. Variation of the Chemical Composition of Waste Cooking Oils upon Bentonite Filtration. *Resources* 8 (108). DOI: 10.3390/resources8020108.

⁹² Mishra and Sharma, 2014. *J Food Sci Technol* 51(6): 1076–1084. DOI: 10.1007/s13197-011-0602-y.

⁹³ Speight, J. G., 1991. The Chemistry and Technology of Petroleum; 2nd Edition, Revised and Expanded. *In* Chemical Industries, Vol. 44. ISBN 0-827-8481-2. Marcel Dekker: New York. <u>See</u> pp. 491, 578–584.

⁹⁴ Speight, J. G., 2013. Heavy and Extra-heavy Oil Upgrading Technologies. Elsevier: NY. ISBN: 978-0-12-404570-5. pp. 78–79, 89–90, 92–93.

⁹⁵ Meyers, R. A., 1986) Handbook of Petroleum Refining Processes. *In* Chemical Process Technology Handbook Series. ISBN 0-07-041763-6. McGraw-Hill: NY. *See* pp. 5-16 and 5-17.

⁹⁶ Bouchy et al., 2009. Fischer-Tropsch Waxes Upgrading via Hydrocracking and Selective Hydroisomerization. *Oil & Gas Science and Technology—Rev.* 64(1): 91-112. DOI: 10.2516/ogst/2008047.

APPENDIX C

Karras, G., Technical Report in Support of Comments (Karras, 2021c)

Technical Report by Greg Karras

G. Karras Consulting (Community Energy reSource)¹ 16 December 2021

Regarding the Phillips 66 Company Rodeo Renewed Project Draft Environmental Impact Report,

County File No. CDLP20-0240, State Clearinghouse No. 2020120330

Lead Agency

Contra Costa County

Contents

Scope of Review	page	1
Project Description and Scope	page	2
Emission-shifting Impacts	page	18
Process Hazard Impacts	page	27
Refinery Flaring Impacts	page	36
Project Baseline	page	40
Conclusions	page	49
Attachments List	page	50

Scope of Review

In October 2021 Contra Costa County ("the County") made available for public review a Draft Environmental Impact Report ("DEIR") for the Phillips 66 Rodeo Renewed Project ("project"). The project would, among other things, repurpose selected petroleum refinery process units and equipment in the Rodeo Facility of the Phillips 66 San Francisco Refinery for processing lipidic (oily) biomass to produce biofuels. Prior to DEIR preparation, people in communities adjacent to the project, environmental groups, community groups, environmental justice groups and others raised numerous questions about potential environmental impacts of the project in scoping comments.

This report reviews the DEIR project description, its evaluations of potential impacts associated with emission-shifting on climate and air quality, refinery process changes on hazards, and refinery flaring on air quality, and its analysis of the project baseline.

¹ The author's curriculum vitae and publications list are appended hereto as Attachment 1.

1. PROJECT DESCRIPTION AND SCOPE

Accurate and complete description of the project is essential to accurate analysis of its potential environmental impacts. In numerous important instances, however, the DEIR does not provide this essential information. Available information that the DEIR does not disclose or describe will be necessary to evaluate potential impacts of the project.

1.1 **Type of Biofuel Technology Proposed**

Biofuels—hydrocarbons derived from biomass and burned as fuels for energy—are made via many different technologies, each of which features a different set of capabilities, limitations, and environmental consequences. <u>See</u> the introduction to *Changing Hydrocarbons Midstream*, appended hereto as Attachment 2, for examples.^{2 3} However, the particular biofuel technology that the project proposes to use is not identified explicitly in the DEIR. Its reference to "renewable fuels" provides experts in the field a hint, but even then, several technologies can make "renewable fuels,"^{4 5} and the DEIR does not state which is actually proposed.

Additional information is necessary to infer that, in fact, the project as proposed would use a biofuel technology called "Hydrotreated Esters and Fatty Acids" (HEFA).

1.1.1 Available evidence indicates that the project would use HEFA technology.

That this is a HEFA conversion project can be inferred based on several converging lines of evidence. First, the project proposes to repurpose the same hydro-conversion processing units that HEFA processing requires along with hydrogen production required by HEFA processing,⁶ hydrotreating, hydrocracking and hydrogen production units.⁷ Second, it does not propose to

² Karras, 2021a. *Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing;* prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting. Appended hereto as Attachment 2 (Att. 2).

³ Attachments to this report hereinafter are cited in footnotes.

⁴ Karras. 2021b. Unsustainable Aviation Fuels: An assessment of carbon emission and sink impacts from biorefining and feedstock choices for producing jet biofuel from repurposed crude refineries; Natural Resources Defense Council (NRDC). Prepared for the NRDC by Greg Karras, G. Karras Consulting. Appended hereto as Attachment 3. ⁵ <u>See</u> USDOE, 2021. Renewable Hydrocarbon Biofuels; U.S. Department of Energy, accessed 29 Nov 2021 at https://afdc.energy.gov/fuels/emerging_hydrocarbon.html and appended hereto as Attachment 3 ("Renewable diesel is a hydrocarbon produced through various processes such as hydrotreating, gasification, pyrolysis, and other biochemical and thermochemical technologies").

⁶ Karras, 2021a (Att. 2).

⁷ DEIR p.p. 3-28, 3-29 including Table 3-3 (hydrocracking units 240, hydrotreating/jet aromatics saturation units 250 and 248, and hydrogen plant Unit 110 to be repurposed) and pp. 4.3-48, 4.6-205, 4.6-210, and 4.8-257 (the onsite Air Liquide "Unit 210" hydrogen plant to be repurposed) for the project

Phillips 66 Rodeo Refinery Project DEIR SCH #2020120330

repurpose, build or use biomass feedstock gasification,⁸ which is required by commercially proven alternative renewable fuels technologies but is not needed for HEFA processing. Third, the project proposes to acquire and pretreat lipidic (oily) biomass such as vegetable oils, animal fats and their derivative oils,⁹ a class of feedstocks required for HEFA processing but not for the alternative biomass gasification technologies, which is generally more expensive than the cellulosic biomass feedstocks those technologies can run.¹⁰ Fourth, the refiner would be highly incentivized to repurpose idled refining assets for HEFA technology instead of using another "renewable" fuel technology, which would not use those assets.¹¹ Finally, in other settings HEFA has been widely identified as the biofuel technology that this and other crude-to-biofuel refinery conversion projects have in common.

With respect to the DEIR itself, however, people who do not already know what biofuel technology is proposed may never learn that from reading it, without digging deeply into the literature outside the document for the evidence described above.

1.1.2 Inherent capabilities and limitations of HEFA technology.

Failure to clearly identify the technology proposed is problematic for environmental review because choosing to rebuild for a particular biofuel technology will necessarily afford the project the particular capabilities of that technology while limiting the project to its inherent limitations.

A unique capability of HEFA technology is its ability to use idled petroleum refining assets for biofuel production—a crucial environmental consideration given growing climate constraints and crude refining overcapacity.¹² Another unique capability of HEFA technology is its ability to produce "drop-in" diesel biofuel that can be added to and blended with petroleum distillates in the existing liquid hydrocarbon fuels distribution and storage system, and internal combustion transportation infrastructure.¹³ In this respect, the DEIR omits the basis for evaluating whether

⁸ DEIR Table 3-3 (new or repurposed equipment to gasify biomass excluded).

⁹ DEIR p. 3-25 ("anticipated project feedstocks ... include, but [are] not limited to" UCO [used cooking oil], FOG [fats oils and grease], tallow [animal fat], inedible corn oil, canola oil, soybean oil, other vegetable-based oils, and/or emerging and other next-generation feedstocks).

¹⁰ Karras, 2021a (Att. 2).

¹¹ Id.

¹² Id.

¹³ Id.

the project could result in combustion emission impacts by adding biofuel to the liquid combustion fuel chain infrastructure of petroleum.

Inherent limitations of HEFA technology that are important to environmental review include high process hydrogen demand, low fuels yield on feedstock—especially for jet fuel and gasoline blending components—and limited feedstock supply.¹⁴

The DEIR does not disclose or describe these uniquely important capabilities and limitations of HEFA technology, and thus the project. Environmental consequences of these undisclosed project capabilities and limitations are discussed throughout this report below.

1.1.3 Potential project hydrogen production technologies.

Despite the inherently high process hydrogen demand of proposed project biorefining the DEIR provides only a cursory and incomplete description of proposed and potential hydrogen supply technologies. The DEIR does not disclose that the technology used by existing onsite hydrogen plants to be repurposed by the project, fossil gas steam reforming, co-produces and emits roughly ten tons of carbon dioxide (CO₂) per ton of hydrogen supplied to project biofuel processing.¹⁵

The DEIR identifies a non-fossil fuel hydrogen production technology—splitting water to coproduce hydrogen and oxygen using electricity from renewable resources—then rejects this solar and wind powered alternative in favor of fossil gas steam reforming, without describing either of those hydrogen alternatives adequately to support a reasonable environmental comparison. Reading the DEIR, one would not know that electrolysis can produce zero-emission hydrogen while steam reforming emits some ten tons of CO_2 per ton of hydrogen produced.

Another hydrogen supply option is left undisclosed. The DEIR does not disclose that existing naphtha reforming units co-produce hydrogen¹⁶ as a byproduct of their operation, or describe the potential that the reformers might be repurposed to process partially refined petroleum while supplying additional hydrogen for expanded HEFA biofuel refining onsite.¹⁷

¹⁵ Id. (median value from multiple Bay Area refinery steam reforming plants of 9.82 g CO₂/g H₂ produced)

¹⁴ Karras, 2021b (Att. 3).

¹⁶ <u>See</u> Chevron Refinery Modernization Project, SCH# 2011062042, DEIR Appendix 4.3–URM: Unit Rate Model, appended hereto as Attachment 5.

¹⁷ The naphtha reformers could supply additional hydrogen for project biorefining if repurposed to process petroleum gasoline feedstocks imported to ongoing refinery petroleum storage and transfer operations.

1.2 **Process Chemistry and Reaction Conditions**

HEFA processing reacts lipidic (oily) biomass with hydrogen over a catalyst at high temperatures and extremely high pressures to produce deoxygenated hydrocarbons, and then restructures the hydrocarbons so that they can be burned as diesel or jet fuel.¹⁸ The DEIR does not describe the project biofuel processing chemistry or reaction conditions; differences in HEFA refining compared with petroleum refining, impacts of feed choices and product targets in HEFA processing, or changes in the process conditions of repurposed refinery process units.¹⁹

1.2.1 Key differences in processing compared with petroleum refining

HEFA technology is based on four or five central process reactions which are not central to or present in crude petroleum processing. Hydrodeoxygenation (HDO) removes the oxygen that is concentrated in HEFA feeds: this reaction is not present in refining crude, which contains little or no oxygen.²⁰ Depropanation is a precondition for completion of the HDO reaction: a condition that is not present in crude refining but needed to free fatty acids from the triacylglycerols in HEFA feeds.²¹ Saturation of the whole HEFA feed also is a precondition for complete HDO: this reaction does not proceed to the same extent in crude refining.²² Each of those HEFA process steps react large amounts of hydrogen with the feed.²³

Isomerization is then needed in HEFA processing to "dewax" the long straight-chain hydrocarbons from the preceding HEFA reactions in order to meet fuel specifications, and is performed in a separate process reactor: isomerization of long-chain hydrocarbons is generally absent from petroleum refining.²⁴ Fuel products from those HEFA process reaction steps include HEFA diesel, a much smaller volume of HEFA jet fuel (without intentional hydrocracking), and little or no gasoline: petroleum crude refining in California yields mostly gasoline with smaller but still significant volumes of diesel and jet fuel.²⁵ The remarkably low HEFA jet fuel yield can

²⁵ Id.

¹⁸ Karras, 2021a (Att. 2)

¹⁹ Karras 2021a (Att. 2) and 2021b (Att. 3) provide examples of that show the DEIR could have described changes in processing chemistry and conditions that would result from the project switch to HEFA technology in relevant detail for environmental analysis. Key points the DEIR omitted are summarized in this report section. ²⁰ Karras, 2021a (Att. 2).

 $^{^{21}}$ Id.

²² Id. ²³ Id.

 $^{^{24}}$ *Id*.

Phillips 66 Rodeo Refinery Project DEIR SCH #2020120330

be boosted to roughly 49% by mass on HEFA feed, via adding intentional hydrocracking in or separately from the isomerization step, but at the expense of lower overall liquid fuels yield and a substantial further increase in the already-high hydrogen process demand of HEFA refining.²⁶

None of these unique aspects of HEFA biofuel processing is described in the DEIR, though each must be evaluated for potential project impacts, as discussed below.

1.2.2 Relationships between feedstock choices, product targets and hydrogen inputs

Both HEFA feedstock choices and HEFA product targets can affect project hydrogen demand for biofuel processing significantly. Among other potential impacts, increased hydrogen production to supply project biorefining would increase CO₂ emissions as discussed in § 1.1.3. The DEIR, however, does not describe these environmentally relevant effects of project feed and product target choices on project biofuel refining.

Available information excluded from the DEIR suggests that choices between potential feedstocks identified in the DEIR²⁷ could result in a difference in project hydrogen demand of up to 0.97 kilograms per barrel of feed processed (kg H₂/b), with soybean oil accounting for the high end of this range.²⁸ Meanwhile, targeting jet fuel yield via intentional hydrocracking could increase project hydrogen demand by up to 1.99 kg H₂/b.²⁹ Choices of HEFA feedstock and product targets in combination could change project hydrogen demand by up to 2.81 kg H₂/b.³⁰

Climate impacts that are identifiable from this undisclosed information appear significant. Looking only at hydrogen steam reforming impacts alone, at its 80,000 b/d capacity³¹ the feed choice (0.97 kg H₂/b), products target (1.99 kg H₂/b), and combined effect (2.81 kg H₂/b) impacts estimated above could result in emission increments of 280,000, 569,000, and 809,000 metric tons of CO_2 emission per year, respectively, from project steam reforming alone. These potential emissions compare with the DEIR significance threshold of 10,000 metric tons/year.³² Most significantly, even the low end of the emissions range for combined feed choice and

²⁶ Karras, 2021a (Att. 2); Karras, 2021b (Att. 3).

²⁷ DEIR p. 3-25 (identifying used cooking oil, fats oils and grease, tallow, inedible corn oil, canola oil, soybean oil, other vegetable-based oils, "and/or emerging and other next-generation" feedstocks).

²⁸ Karras, 2021b (Att. 3).

²⁹ Id.

³⁰ Id.

³¹ An undisclosed project component would debottleneck project biorefining capacity as discussed in § 1.7 below.

³² HEFA emission estimates based on per-barrel steam reforming CO₂ emissions from Table 5 in Attachment 3.

Phillips 66 Rodeo Refinery Project DEIR SCH #2020120330

product target effects, for feeds identified by the DEIR and HEFA steam reforming alone, exceeds the average total carbon intensity of U.S. petroleum crude refining by 4.4 kg CO₂/b (10%) while the high end exceeds that U.S. crude refining CI by 32 kg CO₂/b (77%).^{33 34}

The DEIR project description obscures these potential impacts of the project, among others.

1.2.3 Changes in process conditions of repurposed equipment

With the sole exception of maximum fresh feed input, the DEIR does not disclose design specifications for pre-project or post-project hydro-conversion process unit temperature, pressure, recycle rate, hydrogen consumption, or any other process unit-specific operating parameter. This is especially troubling because available information suggests that the project could increase the severity of the processing environment in the reactor vessels of repurposed hydro-conversion process units significantly.

In one important example, the reactions that consume hydrogen in hydro-conversion processing are highly exothermic: they release substantial heat.³⁵ Further, when these reactions consume more hydrogen the exothermic reaction heat release increases, and HEFA refining consumes more hydrogen per barrel of feed than petroleum refining.³⁶ Hydro-conversion reactors of the types to be repurposed by the project operate at temperatures of some 575–780 °F and pressures of some 600–2,800 pound-force per square inch in normal conditions, when processing petroleum.³⁷ These severe process conditions could become more severe processing HEFA feeds. The project could thus introduce new hazards. Sections 3 and 4 herein review potential process hazards and flare emission impacts which could result from the project, but yet again, information the DEIR does not disclose or describe will be essential to full impacts evaluation.

/

- 1
- /

³⁵ Karras, 2021a (Att. 2).

³³ Id.

³⁴ Average U.S. petroleum refining carbon intensity from 2015–2017 of 41.8 kg CO₂/b crude from Attachments 2, 3.

³⁶ Id.

³⁷ Id.

1.3 **Process Inputs**

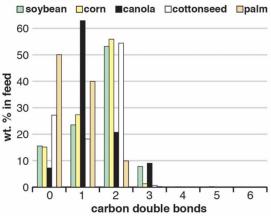
The project would switch the oil refinery from crude petroleum to a new and very different class of oil feeds—triacylglycerols of fatty acids. Switching to new and different feedstock has known potential to increase refinery emissions³⁸ and to create new and different process hazards^{39 40} and feedstock acquisition impacts.⁴¹ Such impacts are known to be related to either the chemistries and processing characteristics of the new feeds, as discussed above, or to the types and locations of extraction activities to acquire the new feeds. However, the DEIR does not describe the chemistries, processing characteristics, or types and locations of feed extraction sufficiently to evaluate potential impacts of the proposed feedstock switch.

1.3.1 Change and variability in feedstock chemistry and processing characteristics

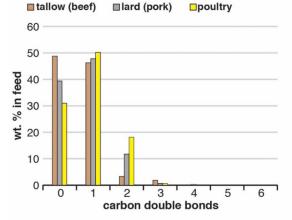
Differences in project processing impacts caused by differences in refinery feedstock, as discussed above, are caused by differences in the chemistries and processing characteristics among feeds that the DEIR does not disclose or describe. For example, feed-driven differences in process hydrogen demand discussed above both boost the carbon intensity of HEFA refining above that of petroleum crude refining, and boost it further still for processing one HEFA feed instead of another. The first impact is driven mainly by the uniformly high oxygen content of HEFA feedstocks, while the second—also environmentally significant, as shown—is largely driven by differences in the number of carbon double bonds among HEFA feeds.⁴² This difference in chemistries among HEFA feeds which underlies that significant difference in their processing characteristics can be quantified based on available information. Charts 1.A–1.F, excerpted from Attachment 2, show the carbon double bond distributions across HEFA feeds.

The DEIR could have reported and described this information that allows for process impacts of potential project feedstock choices to be evaluated, but unfortunately, it did not.

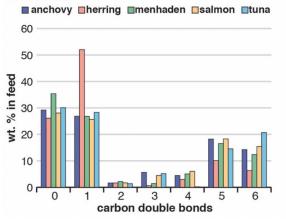
Washington, D.C. https://www.csb.gov/file.aspx?Documentid=5913. Appended hereto as Attachment 7. ⁴⁰ See API, 2009. Guidelines for Avoiding Sulfidation (Sulfidic) Corrosion Failures in Oil Refineries; API

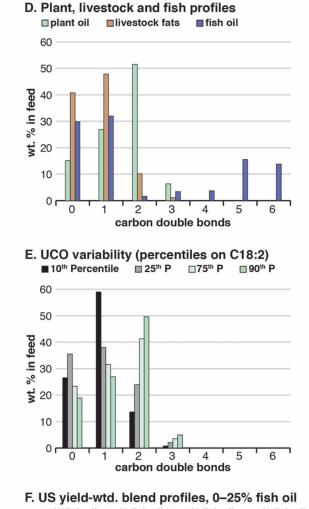

 ³⁸ <u>See</u> Karras, 2010. Combustion Emissions from Refining Lower Quality Oil: What is the global warming potential? *Environ. Sci. Technol.* 44(24): 9584–9589. DOI: 10.1021/es1019965. Appended hereto as Attachment 6.
 ³⁹ <u>See</u> CSB, 2013. *Interim Investigation Report, Chevron Richmond Refinery Fire;* U.S. Chemical Safety Board:

Recommended Practice 939-C. First Edition, May 2009. American Petroleum Institute: Washington, D.C. Appended hereto as Attachment 8.

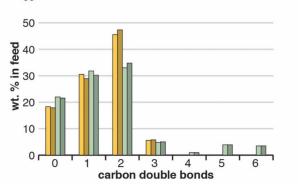

⁴¹ <u>See</u> Krogh et al., 2015. *Crude Injustice on the Rails: Race and the disparate risk from oil trains in California;* Communities for a Better Environment and ForestEthics. June 2015. Appended hereto as Attachment 9.

⁴² See Karras, 2021a (Att. 2); Karras, 2021b (Att. 3).





B. Livestock fats



C. Fish oils

■ 0% fish oil ■ 0% fish oil ■ 25% fish oil ■ 25% fish oil 10th P UCO 90th P UCO 10th P UCO 90th P UCO 60

1. HEFA feed fatty acid profiles by number of carbon double bonds.

Carbon double bonds require more hydrogen in HEFA processing. **A–C.** Plant oil, animal fat and fish oil profiles. **D.** Comparison of weighted averages for plant oils (US farm yield-wtd. 70/20/7/3 soy/corn/canola/cottonseed blend), livestock fats (40/30/30 tallow/lard/poultry blend) and fish oils (equal shares for species in Chart 1C). **E.** UCO: used cooking oil, a highly variable feed. **F.** US yield-weighted blends are 0/85/10/5 and 25/60/10/5 fish/plant/livestock/UCO oils. Profiles are median values based on wt.% of linoleic acid. <u>See</u> Table A1 for data and sources.¹

1.3.2 Types and locations of potential project biomass feed extraction

HEFA biofuel technology is limited to lipidic (oily) feedstocks produced almost exclusively by land-based agriculture, and some of these feeds are extracted by methods that predictably cause deforestation and damage carbon sinks in Amazonia and Southeast Asia.⁴³ However, the DEIR does not describe the types and locations of potential project biomass feed extraction activities.

1.4 **Project Scale**

Despite the obvious relationship between the scale of an action and its potential environmental impacts, the DEIR does not describe the scale of the project in at least two crucial respects. First, the DEIR does not describe its scale relative to other past and currently operating projects of its kind. This omission is remarkable given that available information indicates that project is by far the largest HEFA refinery ever to be proposed or built worldwide.⁴⁴

Second, the DEIR does not describe the scale of proposed feedstock demand. Again, the omission is remarkable. As documented in Attachment 3 hereto, total U.S. production (yield) for all uses of the specific types of lipids which also have been tapped as HEFA feedstocks—crop oils, livestock fats and, to a much lesser degree, fish oils, can be compared with the 80,000 b/d (approximately 4.25 million metric tons/year) proposed project feedstock capacity. See Table 1.

This feedstock supply-demand comparison (Table 1) brings into focus the scale of the project, and the related project proposed by Marathon in Martinez, emphasizing the feedstock supply limitation of HEFA technology discussed in § 1.1.2. Several points bear emphasis for context: The table shows total U.S. yields for all uses of lipids that also have been HEFA feedstocks, including use as food, livestock feed, pet food, and for making soap, wax, cosmetics, lubricants and pharmaceutical products, and for exports.⁴⁵ These existing uses represent commitments of finite resources, notably cropland, to human needs. Used cooking oils derived from primary sources shown are similarly spoken for and in even shorter supply. Lastly, HEFA feeds are limited to lipids (shown) while most other biofuels are not, but multiple other HEFA refineries are operating or proposed besides the two Contra Costa County projects shown.

 ⁴³ <u>See</u> Karras, 2021a (Att. 2); Karras, 2021b (Att. 3).
 ⁴⁴ Karras, 2021a (Att. 2).

⁴⁵ Karras, 2021b (Att. 3).

MM t/v: million metric tons/year

HEFA Feed-	U.S. Yield ^a	Project and County-wide feedstock demand (% of U.S. Yield)			
stock Type	(MM t/y)	Phillips 66 Project b	Marathon Project b	Both Projects	
Fish oil	0.13	3269 %	1961 %	5231 %	
Livestock fat	4.95	86 %	51 %	137 %	
Soybean oil	10.69	40 %	24 %	64 %	
Other oil crops	5.00	85 %	51 %	136 %	
Total yield	20.77	20 %	12 %	33 %	

Table 1. Project Feed Demand v. U.S. Total Yield of Primary HEFA Feed Sources for All Uses.

a. Total U.S. production for all uses of oils and fats also used as primary sources of HEFA biofuel feedstock. Fish oil data for 2009–2019, livestock fat data from various dates, soybean oil and other oil crops data from Oct 2016–Sep 2020, from data and sources in Att. 3. **b.** Based on project demand of 4.25 MM t/y (80,000 b/d from DEIR), related project demand of 2.55 MM t/y (48,000 b/d from related project DEIR), given the typical specific gravity of soy oil and likely feed blends (0.916) from Att. 2.

In this context, the data summarized in Table 1 indicate the potential for environmental impacts. For example, since the project cannot reasonably be expected to displace more than a fraction of existing uses of any one existing lipids resource use represented in the table, it would likely process soy-dominated feed blends that are roughly proportionate to the yields shown.⁴⁶ This could result in a significant climate impact from the soybean oil-driven increase in hydrogen steam reforming emissions discussed in § 1.2.2.

Another example: Feedstock demand from the Contra Costa County HEFA projects alone represents one-third of current total U.S. yield for all uses of the lipids shown in Table 1, including food and food exports. Much smaller increases in biofuel feedstock demand for food crops spurred commodity price pressures that expanded crop and grazing lands into pristine areas globally, resulting in deforestation and damage to natural carbon sinks.⁴⁷ The unprecedented cumulative scale of potential new biofuel feedstock acquisition thus warrants evaluation of the potential for the project to contribute to cumulative indirect land use impacts at this new scale.

The DEIR, however, does not attempt either impact evaluation suggested in these examples. Its project description did not provide a sufficient basis for evaluating feedstock acquisition impacts that are directly related to the scale of the project, which the DEIR did not disclose or describe.

⁴⁶ Data in Table 1 thus rebut the unsupported DEIR assertion that future project feeds are wholly speculative.

⁴⁷ See Karras, 2021a (Att. 2); Karras, 2021b (Att. 3).

1.5 **Project Operational Duration**

The anticipated and technically achievable operational duration of the project, hence the period over which potential impacts of project operation could occur, accumulate, or worsen, is not disclosed or described in the DEIR. This is a significant deficiency because accurate estimation of impacts that worsen over time requires an accurately defined period of impact review.

Contra Costa County could have accessed many data on the operational duration of the project. The refiner would have designed and financed the project based on a specified operational duration. Since this is necessary data for environmental review it could have and should have been requested and supplied. Technically achievable operational duration data for the types of process units the project proposes to use were publicly available as well. For example, process unit-specific operational data for Bay Area refineries, including the subject refinery, have been compiled, analyzed and reported by Communities for a Better Environment.⁴⁸ Information to estimate the anticipated operational duration of the project also can be gleaned from technical data supporting pathways to achieve state climate protection goals,⁴⁹ which include phasing out petroleum and biofuel diesel in favor of zero-emission vehicles.

1.6 **Project Fuels Market**

The DEIR asserts an incomplete and inaccurate description of project fuels markets. It describes potential impacts that could result from conditions which it asserts will increase fuel imports into California⁵⁰ while omitting any discussion whatsoever of exports from California refineries or the conditions under which these exports could occur. California refineries are net fuel exporters due in large part to structural conditions of statewide overcapacity coupled with declining instate petroleum fuels demand.^{51 52 53} The incomplete description of the project fuels market setting led to flawed environmental impacts evaluation, as discussed in sections 2 and 5 herein.

⁴⁸ Karras, 2020. *Decommissioning California Refineries: Climate and Health Paths in an Oil State;* A Report for Communities for a Better Environment. Prepared by Greg Karras. Includes Supporting Material Appendix. www.energy-re-source.com/decomm Appended hereto as Attachment 10.

⁴⁹ Karras, 2021a (Att. 2).

⁵⁰ DEIR pp. 5-3 though 5-7, 5-9, 5-10, 5-19, 5-22 through 5-24.

⁵¹ Karras, 2020 (Att. 10).

⁵² USEIA, 2015. West Coast Transportation Fuels Markets; U.S. Energy Information Administration: Washington, D.C. <u>https://www.eia.gov/analysis/transportationfuels/padd5/</u> Appended hereto as Attachment 11.

⁵³ USEIA, *Supply and Disposition: West Coast (PADD 5);* U.S. Energy Information Administration: Washington, D.C. ww.eia.gov/dnav/pet/pet sum snd d r50 mbbl m cur.htm. Appended hereto as Attachment 12.

1.7 **Project Scope**

The DEIR does not disclose or describe three components of the proposed project that would expand the project scope and its environmental impacts. One of these components directly expands project biofuel refining capacity. Another expands project biofuel refining feedstock input capacity. The third undisclosed component would debottleneck the project biofuel refining capacity by repurposing additional refinery equipment to produce additional hydrogen needed for the expanded biorefining from processing imported petroleum gasoline feedstocks.

1.7.1 The Unit 250 diesel hydrotreater biofuel processing component

During 2021 Phillips 66 implemented the conversion of diesel hydrotreater Unit 250 within the Rodeo facility from petroleum distillate to soybean oil processing⁵⁴ without a Clean Air Act permit⁵⁵ and without any public review. The DEIR asserts there is no connection between Unit 250 and the project because, it says, no further changes are proposed to the unit.⁵⁶ But whether or not *further* change to Unit 250 is proposed is not relevant to the question of whether the *previous* changes to that unit, completed after the project application was filed, should have been considered as part of the project.

The relevant question is whether the changes to Unit 250 are, *functionally*, part of the project, and they are. The project would depend on Unit 250 to maximize onsite refining of the feed pretreatment unit output; and in turn, Unit 250 would depend on the project. It would depend on project feed pretreatment for economical access to pretreated feed, as the DEIR itself concludes in considering project biorefining without that project component.⁵⁷ Even more clearly, since the deoxygenated output of HEFA hydrotreating is too waxy to meet fuel specifications and must be isomerized in a separate processing step before it can be sold as transportation fuel,⁵⁸ Unit 250 depends on the project isomerization component to make its output sellable. The Unit 250

⁵⁴ Phillips 66 1Q 2021 Earnings Transcript. First Quarter 2021 Earnings Call; Phillips 66 (NYSE: PSX) 30 April 2021, 12 p.m. ET. Transcript. Appended hereto as Attachment 13.

⁵⁵ BAAQMD, 2021. 9 Sep 2021 email from Damian Breen, Senior Deputy Executive Officer – Operations, Bay Area Air Quality Management District, to Ann Alexander, NRDC, regarding Phillips 66 refinery (no. 21359) – possible unpermitted modifications. Appended hereto as Attachment 14.

⁵⁶ DEIR p. 5-11.

⁵⁷ DEIR p. 5-6 (alternative without a feed pretreatment unit "considered to be infeasible because it would reduce transportation fuels production at the Rodeo Refinery and severely underuse existing refinery facilities for the production of renewable fuels").

⁵⁸ <u>See</u> subsection 1.2.1 above; for more detail <u>see</u> Karras, 2021a (Att. 2).

HEFA conversion is an interdependent component of the project that is essential to achieve a project objective to maximize project-supplied California biofuels.

The conversion of Unit 250 from petroleum to HEFA feedstock processing is currently under investigation by the Bay Area Air Quality Management District (BAAQMD) for potentially illegal construction, operation, or both without required notice, review, and/or permits.⁵⁹

The failure to include and disclose the Unit 250 HEFA conversion as part of the project appears to be related to a County decision to permit the Nustar biofuel action separately from the subject project before allowing public comment on either action, as discussed below.

1.7.2 The Nustar Shore Terminals biofuel feedstock import conversion

Nustar Shore Terminals—a liquid hydrocarbons transfer and storage facility contiguous with the Phillips 66 facility—and Contra Costa County have taken actions to advance the "Nustar Soybean Oil Project" contemporaneously with the project. According to a 2 December 2020 email from the County, this Nustar action would:

[I]nstall an approximately 2300-foot pipeline from Nustar to Phillips 66 to carry pretreated soybean oil feedstock to existing tankage and the Unit 250 hydrotreater at the Phillips 66 refinery, which can already produce diesel from both renewable and crude feedstocks (see attached site plan). The soybean feedstock will be unloaded at existing Nustar rail facilities which will be modified with 33 offload headers to accommodate the soybean oil. ... it was determined that the modifications proposed by Nustar would not require a land use permit. The appropriate building permits have been issued. ⁶⁰

The site plan referenced by the County⁶¹ is reproduced in its entirety below. Color-coding of the pipeline sections shown on the site plan indicates that the new feedstock pipeline sections reach far into the Phillips 66 refinery; and that the vast majority of new pipeline segments by length is "Phillips 66" rather than "Nustar" pipe.⁶²

Interestingly as well, a closer look at the site map reveals the converted Unit 250 HEFA hydroconversion processing plant at the terminus of the "Nustar Soybean Oil Project" in the refinery.

⁵⁹ BAAQMD, 2021 (Att. 14).

⁶⁰ Kupp, 2020a. Email text and attached site map from Gary Kupp, Contra Costa County, to Charles Davidson, incoming Rodeo-Hercules Fire Protection District director. 2 December 2020. Appended hereto as Attachment 15.
⁶¹ Id.

 $^{^{62}}$ Id.

"Nustar Soybean Oil Project" Site Plan, Contra Costa County (Att. 15),

Accordingly, the available data and information would appear to provide sufficient basis to conclude that the Nustar Shore Terminals project is a component of the project. The DEIR, however, did not disclose or describe the relationship of these concurrently proposed actions at all, and consequently did not take account of potential impacts from a larger project scope.

1.7.3 The component to debottleneck hydrogen-limited refining capacity

Phillips 66 added a project component after the public scoping process that is not disclosed in the DEIR. This component would relieve a bottleneck in hydrogen-limited biofuel refining at the refinery by repurposing additional existing equipment to co-produce hydrogen as a byproduct of processing gasoline feedstocks derived from semi-refined petroleum imported to Rodeo. The DEIR identifies the physical changes integrated into the project post-scoping, but it does not

Phillips 66 Rodeo Refinery Project DEIR SCH #2020120330

identify their debottlenecking effect, and hence does not disclose or describe the additional onsite processing of additional petroleum and biomass or evaluate resultant impacts.

As discussed in sections 1.1 through 1.4, the DEIR does not describe and hence does not evaluate HEFA process demand for hydrogen. It thus failed to identify a hydrogen bottleneck in the disclosed project configuration which, if relieved, would enable processing the additional pretreated feedstock the revised project would produce. The County could have identified this bottleneck by comparing available hydrogen production capacity and process hydrogen demand data for the disclosed project components.⁶³ Had it done so it would have found that the repurposed hydrogen plants cannot actually supply enough hydrogen to refine 80,000 b/d of pretreated vegetable oils; and that this hydrogen bottleneck is particularly severe for jet fuel production. Targeting HEFA jet fuel, a more hydrogen-intensive refining mode,⁶⁴ the hydrogen bottleneck could limit project refining to only about 60% to 70% of pretreated feed capacity.⁶⁵

The debottlenecking traces back to changes Phillips 66 made with respect to permit retention. The company changed its original project description so as to retain permits for existing refinery coking and naphtha reforming units, so that those units could continue or resume operation as part of the project.⁶⁶ Refinery crude distillation units would be shuttered upon full project implementation,⁶⁷ and the coking and reforming units would not process HEFA feedstock or whole crude. Instead, repurposing the coking and reforming units would involve processing semi-refined petroleum acquired from other refineries.⁶⁸ Phillips 66 recently stated in other contexts that it is shifting the specialty coke production from its petroleum refining to produce graphite for batteries,⁶⁹ and planning to use the Rodeo coking unit for that purpose.⁷⁰ The coking would co-produce light oils its reformers would then convert to gasoline blend stocks.

⁶³ Karras, 2021b (Att. 3).

⁶⁴ Id.

⁶⁵ Based on 80,000 b/d project pretreated feed capacity (DEIR); 148,500,000 SCF/d H₂ production capacity of Rodeo units 110 and 120 (Att. 2); H₂ demand targeting jet fuel yield on tallow, and soybean oil, of 2,632, and 2,954 SCF/b feed (Att. 3); and the calculations (targeting jet fuel yield from on soy oil feed, for example):

^{148,500,000} SCF/d \div 2,954 SCF/b = 50,270 b/d of soy oil processed, and 50,270 b/d \div 80,000 b/d = 0.628 (63%). ⁶⁶ BAAQMD Application, 2021. *Compare* also Phillips 66 initial Project Description; DEIR pp. 3-28, 3-29. ⁶⁷ DEIR pp. 3-28. 3-29.

⁶⁸ Only whole crude processing is specifically precluded by the project objectives asserted. <u>See DEIR p. 3-22</u>.

⁶⁹ Phillips 66 3Q 2021 Earnings Conference Call; 29 Oct 2021, 12 p.m. ET. Appended hereto as Attachment 16.

⁷⁰ Weinberg-Lynn, 2021. 23 July 2021 email from Nikolas Weinberg-Lynn, Manager, Renewable Energy Projects, Phillips 66, to Charles Davidson. Appended hereto as Attachment 17.

The debottlenecking element—an important impact of the retained permits that is not identified in the DEIR—is that the light oil reforming would co-produce hydrogen,⁷¹ thereby alleviating the jet biofuel production bottleneck described above.

This undisclosed hydrogen debottleneck action and the disclosed project components would be interdependent components of the project. The hydrogen debottleneck component depends upon the repurposing coking and reforming units that the project would free from crude refining support service. The disclosed project components, in turn, depend on the undisclosed hydrogen debottleneck for the ability to use their full capacity to produce biofuels, and especially HEFA jet fuel. Indeed, without relieving the hydrogen bottleneck the project might not long be viable. The hydrogen debottleneck component would afford the ability to engage in more hydrogen-intensive jet fuel processing, which could boost jet biofuel yield on biomass feedstock from as little as 13% to as much as 49%.⁷² That could allow shifting to jet biofuel production without more drastic cuts in total project biofuel production as State zero-emission vehicle policies phase out diesel biofuels along with petroleum diesel demand.

Thus, Phillips 66 would be highly incentivized to debottleneck its biorefinery; has asserted informal plans *and* formal project objectives⁷³ consistent with that result; and crucially, has changed its project to include the specific equipment which would be used to debottleneck the project in the project. Absent a binding commitment not to implement this action, it would be reasonable to conclude that it is a project component. The DEIR, however, did not disclose or describe this project component, and consequently did not evaluate its potential impacts.

CONCLUSION: The DEIR provides an incomplete, inaccurate, and truncated description of the proposed project. Available information that the DEIR does not describe or disclose will be necessary for sufficient review of environmental impacts that could result from the project.

 ⁷¹ See Chevron Refinery Modernization Project DEIR Appendix 4.3–URM: Unit Rate Model (Att. 5). See also Bredeson et al., 2010. Factors driving refinery CO₂ intensity, with allocation into products. Int. J. Life Cycle Assess. 15:817–826. DOI: 10.1007/s11367-010-0204-3. Appended hereto as Attachment 18; and Abella and Bergerson, 2012. Model to Investigate Energy and Greenhouse Gas Emissions Implications of Refining Petroleum: Impacts of Crude Quality and Refinery Configuration. Environ. Sci. Technol. 46: 13037–13047. dx.doi.org/10.1021/es3018682. Appended hereto as Attachment19.

⁷² Karras, 2021b (Att. 3).

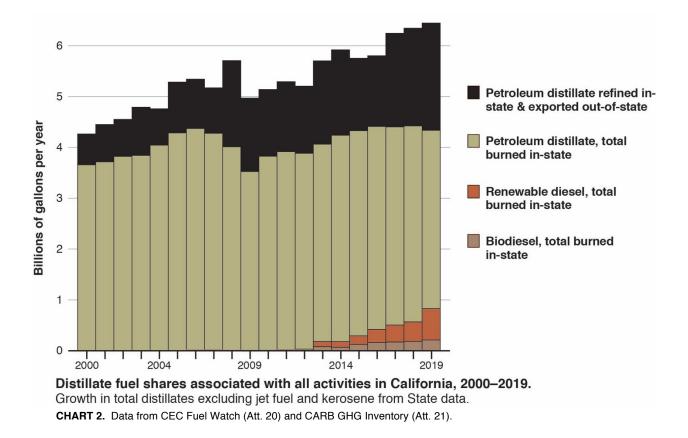
⁷³ DEIR p. 3-22 (objectives to maximize production of renewable fuels and reuse existing equipment).

2. THE DEIR DID NOT CONSIDER A SIGNIFICANT POTENTIAL CLIMATE EMISSION-SHIFTING IMPACT LIKELY TO RESULT FROM THE PROJECT

Instead of replacing fossil fuels, adding renewable diesel to the liquid combustion fuel chain in California resulted in refiners protecting their otherwise stranded assets by increasing exports of petroleum distillates burned elsewhere, causing a net increase in greenhouse gas⁷⁴ emissions. The DEIR improperly concludes that the project would decrease net GHG emissions⁷⁵ without disclosing this emission-shifting, or evaluating its potential to further increase net emissions. A series of errors and omissions in the DEIR further obscures causal factors for the emission shifting by which the project would cause and contribute to this significant potential impact.

2.1 The DEIR Does Not Disclose or Evaluate Available Data Which Contradict its Conclusion That the Project Would Result in a Net Decrease in GHG Emissions

State law warns against "a reduction in emissions of greenhouse gases within the state that is offset by an increase in emissions of greenhouse gases outside the state."⁷⁶ However, the DEIR does not evaluate this emission-shifting impact of the project. Relevant state data that the DEIR failed to disclose or evaluate include volumes of petroleum distillates refined in California⁷⁷ and total distillates—petroleum distillates and diesel biofuels—burned in California.⁷⁸ Had the DEIR evaluated these data the County could have found that its conclusion regarding net GHG emissions resulting from the project was unsupported.


As shown in Chart 2, distillate fuels refining for export continued to expand in California as biofuels that were expected to replace fossil fuels added a new source of carbon to the liquid combustion fuel chain. Total distillate volumes, including diesel biofuels burned in-state, petroleum distillates burned in-state, and petroleum distillates refined in-state and exported to other states and nations, increased from approximately 4.3 billion gallons per year to approximately 6.4 billion gallons per year between 2000 and 2019.^{79 80}

⁷⁴ "Greenhouse gas (GHG)," in this section, means carbon dioxide equivalents (CO₂e) at the 100-year horizon.

 ⁷⁵ "Project operations would decrease emissions of GHGs that could contribute to global climate change" (DEIR p. 2-5) including "indirect emissions" (DEIR p. 4.8-258) and "emissions from transportation fuels" (DEIR p. 4.8-266).
 ⁷⁶ CCR §§ 38505 (j), 38562 (b) (8).

 ⁷⁷ CEC *Fuel Watch*. Weekly Refinery Production. California Energy Commission: Sacramento, CA.
 https://ww2.energy.ca.gov/almanac/petroleum_data/fuels_watch/output.php Appended hereto as Attachment 20.
 ⁷⁸ CARB GHG Inventory. *Fuel Activity for California's Greenhouse Gas Inventory by Sector and Activity; 14th ed.: 2000 to 2019;* California Air Resources Board: Sacramento, CA. Appended hereto as Attachment 21.

⁷⁹ *Id.* ⁸⁰ CEC Fuel Watch (Att. 21).

Petroleum distillates refining for export (black in the chart) expanded after in-state burning of petroleum distillate (olive) peaked in 2006, and the exports expanded again from 2012 to 2019 with more in-state use of diesel biofuels (dark red and brown). From 2000 to 2012 petroleum-related factors alone drove an increase in total distillates production and use associated with all activities in California of nearly one billion gallons per year. Then total distillates production and use associated with activities in California increased again, by more than a billion gallons per year from 2012 to 2019, with biofuels accounting for more than half that increment. These state data show that diesel biofuels did not replace petroleum distillates refined in California during the eight years before the project was proposed. Instead, producing and burning more renewable diesel *along with* the petroleum fuel it was supposed to replace emitted more carbon.

/

/

2.2 The DEIR Presents an Incomplete and Misleading Description of the Project Market Setting that Focuses on Imports and Omits Structural Overcapacity-driven Exports, Thereby Obscuring a Key Causal Factor in the Emission-shifting Impact

The DEIR focuses on potential negative effects of reliance on imports if the proposed project is rejected in favor of alternatives,⁸¹ while ignoring fuels exports from in-state refineries and conditions under which these exports occur. As a result the DEIR fails to disclose that crude refineries here are net fuels exporters, that their exports have grown as in-state and West Coast demand for petroleum fuels declined, and that the structural overcapacity resulting in this export emissions impact would not be resolved and could be worsened by the project.

Due to the concentration of petroleum refining infrastructure in California and on the U.S. West Coast, including California and Puget Sound, WA, these markets were net exporters of transportation fuels before renewable diesel flooded into the California market.⁸² Importantly, before diesel biofuel addition further increased refining of petroleum distillates for export, the structural overcapacity of California refineries was evident from the increase in their exports after in-state demand peaked in 2006. *See* Chart 2 above. California refining capacity, especially, is overbuilt.⁸³ Industry reactions seeking to protect those otherwise stranded refining assets through increased refined fuels exports as domestic markets for petroleum fuels declined resulted in exporting fully 20% to 33% of statewide refinery production to other states and nations from 2013–2017.⁸⁴ West Coast data further demonstrate the strong effect of changes in domestic demand on foreign exports from this over-built refining center.⁸⁵ *See* Table 2.

Table 2. West Coast (PADD 5) Finished Petroleum Products: Decadal Changes in Domestic
Demand and Foreign Exports, 1990–2019.

	Volume (billio	ns of gallons)	Decadal Change (%)	
Period	Demand	Exports	Demand	Exports
1 Jan 1990 to 31 Dec 1999	406	44.2	_	_
1 Jan 2000 to 31 Dec 2009	457	35.1	+13 %	-21 %
1 Jan 2010 to 31 Dec 2019	442	50.9	-3.3 %	+45 %

Total volumes reported for ten-year periods

Data from USEIA, Supply and Disposition (Att. 12).

⁸¹ DEIR pp. 5-3 though 5-7, 5-9, 5-10, 5-19, 5-22 through 5-24.

⁸² USEIA, 2015 (Att. 11).

⁸³ Karras, 2020 (Att. 10).

⁸⁴ Id.

⁸⁵ USEIA, Supply and Disposition (Att. 12).

Comparisons of historic with recent California and West Coast data further demonstrate that this crude refining overcapacity for domestic petroleum fuels demand that drives the emission-shifting impact is unresolved and would not be resolved by the proposed project and the related Contra Costa County crude-to-biofuel conversion project. Fuels demand has rebounded, at least temporarily, from pre-vaccine pandemic levels to the range defined by pre-pandemic levels, accounting for seasonal and interannual variability. In California, from April through June 2021 taxable fuel sales⁸⁶ approached the range of interannual variability from 2012–2019 for gasoline and reached the low end of this pre-COVID range in July, while taxable jet fuel and diesel sales exceeded the maximum or median of the 2012–2019 range in each month from April through July of 2021. <u>See</u> Table 3.

Fuel volumes in millions of gallons (MM gal.) per month					
	Demand	Pre-CO\	/ID range (201	2–2019)	Comparison of 2021 data with
	in 2021	Minimum	Median	Maximum	the same month in 2012–2019
Gasoline (N	IM gal.)				
Jan	995	1,166	1,219	1,234	Below pre-COVID range
Feb	975	1,098	1,152	1,224	Below pre-COVID range
Mar	1,138	1,237	1,289	1,343	Below pre-COVID range
Apr	1,155	1,184	1,265	1,346	Approaches pre-COVID range
Мау	1,207	1,259	1,287	1,355	Approaches pre-COVID range
Jun	1,196	1,217	1,272	1,317	Approaches pre-COVID range
Jul	1,231	1,230	1,298	1,514	Within pre-COVID range
Jet fuel (MM	1 gal.)				
Jan	10.74	9.91	11.09	13.69	Within pre-COVID range
Feb	10.80	10.13	11.10	13.58	Within pre-COVID range
Mar	13.21	11.23	11.95	14.53	Exceeds pre-COVID median
Apr	13.84	10.69	11.50	13.58	Exceeds pre-COVID range
Мау	15.14	4.84	13.07	16.44	Exceeds pre-COVID median
Jun	17.08	8.67	12.75	16.80	Exceeds pre-COVID range
Jul	16.66	11.05	13.34	15.58	Exceeds pre-COVID range
Diesel (MM	gal.)				
Jan	203.5	181.0	205.7	217.8	Within pre-COVID range
Feb	204.4	184.1	191.9	212.7	Exceeds pre-COVID median
Mar	305.4	231.2	265.2	300.9	Exceeds pre-COVID range
Apr	257.1	197.6	224.0	259.3	Exceeds pre-COVID median
May	244.5	216.9	231.8	253.0	Exceeds pre-COVID median
Jun	318.3	250.0	265.0	309.0	Exceeds pre-COVID range
Jul	248.6	217.8	241.5	297.0	Exceeds pre-COVID median

Table 3. California Taxable Fuel Sales Data: Return to Pre-COVID Volumes

Fuel volumes in millions of gallons (MM gal.) per month

Data from CDTFA, (Att. 22). Pre-COVID statistics are for the same months in 2012–2019. The multiyear monthly comparison range accounts for seasonal and interannual variability in fuels demand. Jet fuel totals may exclude fueling in California for fuels presumed to be burned outside the state during interstate and international flights.

⁸⁶ CDTFA, various years. *Fuel Taxes Statistics & Reports;* Cal. Dept. Tax and Fee Admin: Sacramento, CA. https://www.cdtfa.ca.gov/taxes-and-fees/spftrpts.htm. Appended hereto as Attachment 22.

West Coast fuels demand in April and May 2021 approached or fell within the 2010–2019 range for gasoline and jet fuel and exceeded that range for diesel.⁸⁷ In June and July 2021 demand for gasoline exceeded the 2010–2019 median, jet fuel fell within the 2010–2019 range, and diesel fell within the 2010–2019 range or exceeded the 2010–2019 median.⁸⁸ <u>See</u> Table 4.

	Fuel volum	nes in millions	of barrels (Mi	M bbl.) per mon	th
	Demand	Pre-CO\	/ID range (201	10–2019)	Comparison of 2021 data with
	in 2021	Minimum	Median	Maximum	the same month in 2010–2019
Gasoline (MM	/I bbl.)				
Jan	38.59	42.31	45.29	49.73	Below pre-COVID range
Feb	38.54	40.94	42.75	47.01	Below pre-COVID range
Mar	45.14	45.23	48.97	52.53	Approaches pre-COVID range
Apr	44.97	44.99	47.25	50.20	Approaches pre-COVID range
May	48.78	46.79	49.00	52.18	Within pre-COVID range
Jun	48.70	45.61	48.14	51.15	Exceeds pre-COVID median
Jul	50.12	47.33	49.09	52.39	Exceeds pre-COVID median
Jet fuel (MM	bbl.)				
Jan	9.97	11.57	13.03	19.07	Below pre-COVID range
Feb	10.35	10.90	11.70	18.33	Below pre-COVID range
Mar	11.08	11.82	13.68	16.68	Below pre-COVID median
Apr	11.71	10.83	13.78	16.57	Within pre-COVID range
May	12.12	12.80	13.92	16.90	Approaches pre-COVID range
Jun	14.47	13.03	14.99	17.64	Within pre-COVID range
Jul	15.31	13.62	15.46	18.41	Within pre-COVID range
Diesel (MM b	bl.)				
Jan	15.14	12.78	14.41	15.12	Exceeds pre-COVID range
Feb	15.01	12.49	13.51	15.29	Exceeds pre-COVID median
Mar	17.08	14.12	15.25	16.33	Exceeds pre-COVID range
Apr	15.76	14.14	14.93	16.12	Exceeds pre-COVID median
May	16.94	15.11	15.91	17.27	Exceeds pre-COVID median
Jun	14.65	14.53	16.03	16.84	Within pre-COVID range
Jul	16.94	15.44	16.40	17.78	Exceeds pre-COVID median

Table 4. West Coast (PADD 5) Fuels Demand Data: Return to Pre-COVID Volumes

Data from USEIA *Supply and Disposition* (Att. 12). "Product Supplied," which approximately represents demand because it measures the disappearance of these fuels from primary sources, i.e., refineries, gas processing plants, blending plants, pipelines, and bulk terminals. PADD 5 includes AK, AZ, CA, HI, NV, OR, and WA. Pre-COVID statistics are for the same month in 2010–2019, thus accounting for seasonal and interannual variability.

Despite this several-month surge in demand the year after the Marathon Martinez refinery closed, California and West Coast refineries supplied the rebound in fuels demand while running well below capacity. Four-week average California refinery capacity utilization rates from 20 March through 6 August 2021 ranged from 81.6% to 87.3% (Table 5), similar to those across the

⁸⁸ Id.

⁸⁷ USEIA, Supply and Disposition (Att. 12).

barrel (oil): 42 U.S. gallons		barrels/calendar day: see table caption below		
Four-week period	Calif. refinery crude input (barrels/day)	Operable crude capacity (barrels/calendar day)	Capacity utilized (%)	
12/26/20 through 01/22/21	1,222,679	1,748,171	69.9 %	
01/23/21 through 02/19/21	1,199,571	1,748,171	68.6 %	
02/20/21 through 03/19/21	1,318,357	1,748,171	75.4 %	
03/20/21 through 04/16/21	1,426,000	1,748,171	81.6 %	
04/17/21 through 05/14/21	1,487,536	1,748,171	85.1 %	
05/15/21 through 06/11/21	1,491,000	1,748,171	85.3 %	
06/12/21 through 07/09/21	1,525,750	1,748,171	87.3 %	
07/10/21 through 08/06/21	1,442,750	1,748,171	82.5 %	
08/07/21 through 09/03/21	1,475,179	1,748,171	84.4 %	
09/04/21 through 10/01/21	1,488,571	1,748,171	85.1 %	
10/02/21 through 10/29/21	1,442,429	1,748,171	82.5 %	

Table 5. Total California Refinery Capacity Utilization in Four-week Periods of 2021.

Total California refinery crude inputs from Att. 20. Statewide refinery capacity as of 1/1/21, after the Marathon Martinez refinery closure, from Att. 23. Capacity in barrels/calendar day accounts for down-stream refinery bottlenecks, types and grades of crude processed, operating permit constraints, and both scheduled and unscheduled downtime for inspection, maintenance, and repairs.

West Coast, and well below maximum West Coast capacity utilization rates for the same months in 2010–2019 (Table 6).^{89 90 91} Moreover, review of Table 5 reveals 222,000 b/d to more than 305,000 b/d of spare California refinery capacity during this fuels demand rebound.

	Capacity Utilized	Pre-COVID range for same month in 2010–2019			
Month	in 2021	Minimum	Median	Maximum	
January	73.3 %	76.4 %	83.7 %	90.1 %	
February	74.2 %	78.2 %	82.6 %	90.9 %	
March	81.2 %	76.9 %	84.8 %	95.7 %	
April	82.6 %	77.5 %	82.7 %	91.3 %	
May	84.2 %	76.1 %	84.0 %	87.5 %	
June	88.3 %	84.3 %	87.2 %	98.4 %	
July	85.9 %	83.3 %	90.7 %	97.2 %	
August	87.8 %	79.6 %	90.2 %	98.3 %	
September	_	80.4 %	87.2 %	96.9 %	
October	_	76.4 %	86.1 %	91.2 %	
November	_	77.6 %	85.3 %	94.3 %	
December	_	79.5 %	87.5 %	94.4 %	

Table 6. West Coast (PADD 5) Percent Utilization of Operable Refinery Capacity.

Utilization of operable capacity in barrels/calendar day from Att. 24. PADD 5 includes AK, AZ, CA, HI, NV, OR, and WA. Pre-COVID data for the same month in 2010–2019 accounts for seasonal and interannual variability.

⁸⁹ CEC Fuel Watch (Att. 20).

 ⁹⁰ USEIA *Refinery Capacity by Individual Refinery*. Data as of Jan 1, 2021; U.S. Energy Information
 Administration: Washington, D.C. www.eia.gov/petroleum/refinerycapacity Appended hereto as Attachment 23.
 ⁹¹ USEIA *Refinery Utilization and Capacity*. PADD 5 data as of Sep 2021. U.S. Energy Information Administration:
 Washington, D.C. www.eia.gov/dnav/pet/pet pnp unc dcu r50 m.htm Appended hereto as Attachment 24.

Spare California refining capacity during this period when fuels demand increased to reach pre-COVID levels and crude processing at the Marathon Martinez refinery was shut down (222,000 to 305,000 b/cd) exceeded the total 120,200 b/cd crude capacity of the Phillips 66 refinery.⁹² Thus, the project could not fully alleviate the growing condition of overcapacity that drives refined fuels export emission-shifting; rather, it would produce and sell an unprecedented amount of California-targeted HEFA diesel into the California fuels market.

Accordingly, the project can be expected to worsen in-state petroleum refining overcapacity, and hence the emission shift, by adding a very large volume of HEFA diesel to the California liquid combustion fuels mix. Indeed, maximizing additional "renewable" fuels production for the California market is a project objective.⁹³ The DEIR, however, does not disclose or evaluate this causal factor for the observed emission-shifting impact of recent "renewable" diesel additions.

2.3 The DEIR Does Not Describe or Evaluate Project Design Specifications That Could Cause and Contribute to Significant Emission-shifting Impacts

Having failed to describe the unique capabilities and limitations of the proposed biofuel technology (§§ 1.1.1, 1.1.2), the DEIR does not evaluate how fully integrating renewable diesel into petroleum fuels refining, distribution, and combustion infrastructure could worsen emission shifting by more directly tethering biofuel addition here to petroleum fuel refining for export. Compounding its error, the DEIR does not evaluate the impact of another basic project design specification—project fuels production capacity. The DEIR does not estimate how much HEFA diesel the project could add to the existing statewide distillates production oversupply, or how much that could worsen the emission shifting impact. Had it done so, using readily available state default factors for the carbon intensities of these fuels, the County could have found that the project would likely cause and contribute to significant climate impacts. *See* Table 7 below.

Accounting for yields on feeds targeting renewable diesel⁹⁴ and typical feed and fuel densities shown in Table 7, operating below capacity at 55,000 b/d the project could make approximately 1.86 million gallons per day of renewable diesel, resulting in export of the equivalent petroleum

⁹² Though USEIA labels the San Francisco Refinery site as Rodeo, both the Rodeo Facility and the Santa Maria Facility capacities are included in the 120,200 barrels/calendar day (b/cd) cited: USEIA *Refinery Capacity by Individual Refinery* (Att. 23).

⁹³ DEIR p. 3-22.

⁹⁴ Pearlson et al., 2013. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. *Biofuels, Bioprod. Bioref.* 7: 89–96. DOI: 10.1002/bbb.1378. Appended hereto as Attachment 25.

distillates volume. State default factors for full fuel chain "life cycle" emissions associated with the type of renewable diesel proposed account for a range of potential emissions, from lower emission ("residue") to higher emission ("crop biomass") feeds, which is shown in the table.⁹⁵ The net emission shifting impact of the project based on this range of factors could thus be approximately 3.96 to 5.72 *million* metric tons (Mt) of CO₂e emitted per year. Table 7. Those potential project emissions would exceed the 10,000 metric tons per year (0.01 Mt/year) significance threshold in the DEIR by 395 to 571 times.

A *conservative* estimate of net cumulative emissions from this impact of the currently proposed biofuel refinery projects in the County, *if* state goals to replace all diesel fuels are achieved more quickly than anticipated, is in the range of approximately 74 Mt to 107 Mt over ten years. *Id*.

RD: renewable diesel PD: petroleum	distillate CO2e: carbon	dioxide equivalents Mt:	million metric tons
Estimate Scope	Phillips 66 Project	Marathon Project	Both Projects
Fuel Shift (millions of gallons per day) ^a RD for in-state use PD equivalent exported	1.860 1.860	1.623 1.623	3.482 3.482
Emission factor (kg CO ₂ e/galllon) ^b RD from residue biomass feedstock RD from crop biomass feedstock PD (petroleum distillate [ULSD factor])	5.834 8.427 13.508	5.834 8.427 13.508	5.834 8.427 13.508
Fuel-specific emissions (Mt/year) ° RD from residue biomass feedstock RD from crop biomass feedstock PD (petroleum distillate)	3.96 5.72 9.17	3.46 4.99 8.00	7.42 10.7 17.2
Net emission shift impact ^d Annual minimum (Mt/year) Annual maximum (Mt/year) Ten-year minimum (Mt) Ten-year maximum (Mt)	3.96 5.72 39.6 57.2	3.46 4.99 34.6 49.9	7.42 10.7 74.2 107

 Table 7.
 Potential GHG Emission Impacts from Project-induced Emission Shifting: Estimates

 Based on Low Carbon Fuel Standard Default Emission Factors.

a. Calculated based on DEIR project feedstock processing capacities,* yield reported for refining targeting HEFA diesel by Pearlson et al., 2013, and feed and fuel specific gravities of 0.916 and 0.775 respectively. **b.** CARB default emission factors from tables 2, 4, 7-1, 8 and 9, Low Carbon Fuel Standard Regulation, CCR §§ 95484–95488. **c.** Fuel-specific emissions are the products of the fuel volumes and emission factors shown. **d.** The emission shift impact is the net emissions calculated as the sum of the fuel-specific emissions minus the incremental emission from the petroleum fuel *v*. the same volume of the biofuel. Net emissions are thus equivalent to emissions from the production and use of renewable diesel that *does not* replace petroleum distillates, as shown. Annual values compare with the DEIR significance threshold (0.01 Mt/year); ten-year values provide a conservative estimate of cumulative impact assuming expeditious implementation of State goals to replace all diesel fuels. * Phillips 66 Project data calculated at 55,000 b/d feed rate, less than its proposed 80,000 b/d project feed capacity.

⁹⁵ Low Carbon Fuel Standard Regulation, tables 2, 4, 7-1, 8 and 9. CCR §§ 95484–95488.

2.4 The DEIR Does Not Consider Air Quality or Environmental Justice Impacts From GHG Co-Pollutants that Could Result from Project Emission Shifting

Having neglected to consider emission shifting that could result from the project, the DEIR does not evaluate air quality or environmental justice impacts that could result from GHG coemissions. Had it considered the emission-shifting impact the County could have evaluated substantial relevant information regarding potential impacts of GHG co-pollutants.

Among other relevant available information: Pastor and colleagues found GHG co-pollutants emissions of particulate matter from large industrial GHG emitters in general, and refineries in particular, result in substantially increased emission burdens in low-income communities of color throughout the state.⁹⁶ Clark and colleagues found persistent disparately elevated exposures to refined fuels combustion emissions among people of color along major roadways in California and the U.S.⁹⁷ Zhao and colleagues showed that exposures to the portion of those emissions that could result from climate protection decisions to use more biofuel, instead of more electrification of transportation among other sectors, would cause very large air pollution-induced premature death increments statewide.⁹⁸

Again, however, the DEIR did not evaluate these potential project emission-shifting impacts.

CONCLUSION: A reasonable potential exists for the project to result in significant climate and air quality impacts by increasing the production and export of California-refined fuels instead of replacing petroleum fuels. This impact would be related to the particular type and use of biofuel proposed. Resultant greenhouse gases and co-pollutants would emit in California from excess petroleum and biofuel refining, and emit in California as well as in other states and nations from petroleum and biofuel feedstock extraction and end-use fuel combustion. The DEIR does not identify, evaluate, or mitigate these significant potential impacts of the project.

⁹⁶ Pastor et al., 2010. *Minding the Climate Gap: What's at stake if California's climate law isn't done right and right away;* College of Natural Resources, Department of Environmental Science, Policy, and Management, University of California, Berkeley: Berkeley, CA; and Program for Environmental and Regional Equity, University of Southern California: Los Angeles, CA. Appended hereto as Attachment 26.

⁹⁷ Clark et al, 2017. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: Outdoor nitrogen dioxide in the United States in 2000 and 2010. *Environmental Health Perspectives* 097012-1 to 097012-10. 10.1289/EHP959. Appended hereto as Attachment 27.

⁹⁸ Zhao et al., 2019. Air quality and health co-benefits of different deep decarbonization pathways in California. *Environ. Sci. Technol.* 53: 7163–7171. DOI: 10.1021/acs.est.9b02385. Appended hereto as Attachment 28.

3. THE DEIR DOES NOT PROVIDE A COMPLETE OR ACCURATE ANALYSIS OF PROCESS HAZARDS AND DOES NOT IDENTIFY, EVALUATE, OR MITIGATE SIGNIFICANT POTENTIAL PROJECT HAZARD IMPACTS

Oil refining is an exceptionally high-hazard industry in which switching to a new and different type of oil feed has known potential to introduce new hazards, intensify existing hazards, or both. Switching from crude petroleum to HEFA feedstock refining introduces specific new hazards that could increase the incidence rate of refinery explosions and uncontrolled fires, hence the likelihood of potentially catastrophic consequences of the project over its operational duration. The DEIR does not identify, evaluate, or mitigate these specific process hazards or significant potential process hazard impacts. A series of errors and omissions in the DEIR further obscures these process hazards and impacts.

3.1 The DEIR Does Not Provide a Complete or Accurate Analysis of Project Hazards

The DEIR states that its process hazard analysis "approach involves examining the potential hazards produced by the inventory of hazardous materials and comparing the baseline with the Project level of hazardous materials use and storage."⁹⁹ This comparison is further limited to "how readily the material produces a vapor cloud and how readily the material will ignite and burn,"¹⁰⁰ and to comparing only raw feedstocks or finished refined products.¹⁰¹ The DEIR then concludes that project feedstocks present substantially lower hazards, "do not end up producing as much lighter-ends at the refinery for storage and processing ... [and] in general, the Project would present less hazards to the public and the impacts would be less than significant."¹⁰²

However, this DEIR analysis is incomplete and inaccurate in ways that obscure rather than identify potential process hazard impacts. In the first instance, its comparison of raw feeds and finished products omits consideration of explosive and flammable mixtures of semi-processed hydrocarbons and hydrogen at high temperature and extreme pressure in project hydro-conversion reactors.¹⁰³ This alone shows the DEIR conclusion regarding project process hazards to be unsupported. Yet it is but one omission from the DEIR hazards analysis. The DEIR does

¹⁰² DEIR p. 338.

⁹⁹ DEIR p. 4.9-321.

¹⁰⁰ DEIR p. 4.9-336.

¹⁰¹ DEIR p. 4.9-337, Table 4.9-5 (hydrogen; methane; propane; gasoline; jet fuel; diesel fuel; un-weathered light, medium, and heavy crude oil; crude bitumen; cooking oil; and Grade 1 Tallow).

¹⁰³ <u>See</u> subsections 1.2 and 1.3 herein above.

Phillips 66 Rodeo Refinery Project DEIR SCH #2020120330

not include, and does not report substantively on results from, any of several standard process hazard analysis requirements applicable to petroleum crude refining.

The DEIR did not include or report substantive results of any Process Hazard Analysis (PHA);¹⁰⁴ Hierarchy of Hazard Controls Analysis; Inherent Safety Measure analysis; recommendations to prioritize inherent safety measures and then include safeguards as added layers of protection from any potential project process hazard, or Management of Change (MOC) to manage potential hazards of process change¹⁰⁵ during the proposed feedstock switch.

Although the DEIR mentions some of these standard refinery process safety requirements and safeguards, its description of them is incomplete. PHA, Hierarchy of Hazard Controls Analysis, and Inherent Safety Measure, Safeguard, and Layer of Protection analyses are a sequence of rigorous formal analyses. Together they are designed to identify and evaluate specific hazards in specific processes and processing systems, ensure that the most effective types of measures which can eliminate each identified hazard are prioritized, then add safeguards, in declining order of effectiveness, to reduce any remaining hazard.¹⁰⁶

PHAs seek to identify and evaluate the potential severity of specific hazards in specific project processes or processing systems.¹⁰⁷ These are the types of hazards the DEIR analysis method cannot identify, as discussed above. Hierarchy of Hazard Controls Analysis then seeks to ensure Inherent Safety Measures, designed to eliminate specific hazards and thus the most effective type of process hazard mitigation, are prioritized to the maximum extent feasible.¹⁰⁸ In contrast, the DEIR analysis fails to identify process hazards evidenced by proposed project use of "safety" flaring,¹⁰⁹ evaluate the significance of hazardous releases from flaring, or analyze mitigation measures which may be necessary in addition to the flaring safeguard and could reduce flaring.

The DEIR could have used an appropriate and established standard method to identify, evaluate, and analyze ways to lessen or avoid process hazards that could result from the project. Had it done so significant process hazards could have been identified, as discussed below.

 107 Id.

¹⁰⁴ A PHA is a hazard evaluation to identify, evaluate, and control the hazards involved in a process.

¹⁰⁵ See California refinery process safety management regulation, CCR § 5189.

 $[\]frac{106}{Id}$.

 $^{^{108}}$ Id.

¹⁰⁹ DEIR p. 3-17.

3.2 The DEIR Does Not Identify or Evaluate Significant Process Hazard Impacts, Including Refinery Explosions and Fires, That Could Result from the Project

Had the DEIR provided a complete and accurate process hazard evaluation the County could have identified significant impacts that would result from project process hazards.¹¹⁰

3.2.1 <u>The DEIR does not disclose or evaluate available information which reveals that the</u> project could increase refinery explosion and fire risks compared with crude refining

After a catastrophic pipe failure ignited in the Richmond refinery sending 15,000 people to hospital emergency rooms, a feed change was found to be a causal factor in that disaster—and failures by Chevron and public safety officials to take hazards of that feed change seriously were found to be its root causes. The oil industry knew that introducing a new and different crude into an existing refinery can introduce new hazards. More than this, as it has long known, side effects of feed processing can cause hazardous conditions in the same types of hydro-conversion units now proposed to be repurposed for HEFA biomass feeds, and feedstock changes are among the most frequent causes of dangerous upsets in these hydro-conversion reactors.¹¹¹

Differences between the new biomass feedstock proposed and crude oil are more extreme than those among crudes which Chevron ignored the hazards of before the August 2012 disaster in Richmond, and involve oxygen in the feed, rather than sulfur as in that disaster. This categorical difference between oxygen and sulfur, rather than a degree of difference in feed sulfur content, risks further minimizing the accuracy, or even feasibility, of predictions based on historical data. At 10.8–11.5 wt. %, HEFA feeds have very high oxygen content, while the petroleum crude fed to refinery processing has virtually none.¹¹² Carbonic acid forms from that oxygen in HEFA processing.¹¹³ Carbonic acid corrosion is a known hazard in HEFA processing.¹¹⁴ But this corrosion mechanism, and the specific locations it attacks in the refinery, differ from those of the sulfidic corrosion cannot reliably guide—and could misguide—the refiner as it attempts to find, then fix, damage from this new hazard before it causes equipment failures.¹¹⁵

¹¹⁰ My recent work has included in-depth review and analysis of process hazards associated with crude-to-biofuel refinery conversions; summaries of this work are excerpted from Karras, 2021a (Att. 2) in §§ 3.2.1–3.2.5 herein. ¹¹¹ Karras, 2021a (Att. 2).

¹¹² Id.

¹¹³ Chan, 2020. *Converting a Petroleum Diesel Refinery for Renewable Diesel;* White Paper / Renewable Diesel. Burns McDonnell. www.burnsmcd.com. Appended hereto as Attachment 29.

¹¹⁴ Id.

¹¹⁵ Karras, 2021a (Att. 2).

Worse, high-oxygen HEFA feedstock can boost hydrogen consumption in hydro-conversion reactors dramatically. That creates more heat in reactors already prone to overheating in petroleum refining. Switching repurposed hydrocrackers and hydrotreaters to HEFA feeds would introduce this second new oxygen-related hazard.¹¹⁶

A specific feedback mechanism underlies this hazard. The hydro-conversion reactions are exothermic: they generate heat.^{117 118 119} When they consume more hydrogen, they generate more heat.¹²⁰ Then they get hotter, and crack more of their feed, consuming even more hydrogen,^{121 122} so "the hotter they get, the faster they get hot."¹²³ And the reactions proceed at extreme pressures of 600–2,800 pound-force per square inch,¹²⁴ so the exponential temperature rise can happen fast.

Refiners call these runaway reactions, temperature runaways, or "runaways" for short. Hydroconversion runaways are remarkably dangerous. They have melted holes in eight-inch-thick, stainless steel, walls of hydrocracker reactors,¹²⁵ and worse. Consuming more hydrogen per barrel in the reactors, and thereby increasing reaction temperatures, HEFA feedstock processing can be expected to increase the frequency and magnitude of runaways.¹²⁶

High temperature hydrogen attack or embrittlement of metals in refining equipment with the addition of so much more hydrogen to HEFA processing is a third known hazard.¹²⁷ And given the short track record of HEFA processing, the potential for other, yet-to-manifest, hazards cannot be discounted.¹²⁸

¹¹⁶ Id.

¹¹⁷ Robinson and Dolbear, 2007. Commercial Hydrotreating and Hydrocracking. *In:* Hydroprocessing of heavy oils and residua. Ancheyta, J., and Speight, J., eds. CRC Press, Taylor & Francis Group: Boca Raton, FL. ISBN-13: 978-0-8493-7419-7. Appended hereto as Attachment 30.

¹¹⁸ van Dyk et al., 2019. Potential synergies of drop-in biofuel production with further co-processing at oil refineries. *Biofuels Bioproducts & Biorefining* 13: 760–775. DOI: 10.1002/bbb.1974. Appended hereto as Attachment 31. ¹¹⁹ Chan, 2020 (Att. 29).

¹²⁰ van Dyk et al., 2019 (Att. 31).

¹²¹ Id.

¹²² Robinson and Dolbear, 2007 (Att. 30).

¹²³ Id.

¹²⁴ Id.

¹²⁵ *Id.*

¹²⁶ Karras, 2021a (Att 2).

¹²⁷ Chan, 2020 (Att. 29).

¹²⁸ Karras, 2021a (Att. 2).

On top of all this, interdependence across the process system—such as the critical need for realtime balance between hydro-conversion units that feed hydrogen and hydrogen production units that make it—magnifies these hazards. Upsets in one part of the system can escalate across the refinery. Hydrogen-related hazards that manifest at first as isolated incidents can escalate with catastrophic consequences.¹²⁹

3.2.2 <u>The DEIR does not disclose or evaluate available information about potential</u> consequences of hydrogen-related hazards that the project could worsen

Significant and sometimes catastrophic incidents involving the types of hydrogen processing proposed by the project are unfortunately common in crude oil refining, as reflected in the following incident briefs posted by *Process Safety Integrity*¹³⁰ report:

- Eight workers are injured and a nearby town is evacuated in a 2018 hydrotreater reactor rupture, explosion and fire.
- A worker is seriously injured in a 2017 hydrotreater fire that burns for two days and causes an estimated \$220 million in property damage.
- A reactor hydrogen leak ignites in a 2017 hydrocracker fire that causes extensive damage to the main reactor.
- A 2015 hydrogen conduit explosion throws workers against a steel refinery structure.
- Fifteen workers die, and 180 others are injured, in a series of explosions when hydrocarbons flood a distillation tower during a 2005 isomerization unit restart.
- A vapor release from a valve bonnet failure in a high-pressure hydrocracker section ignites in a major 1999 explosion and fire at the Chevron Richmond refinery.
- A worker dies, 46 others are injured, and the community must shelter in place when a release of hydrogen and hydrocarbons under high temperature and pressure ignites in a 1997 hydrocracker explosion and fire at the Tosco (now Marathon) Martinez refinery.
- A Los Angeles refinery hydrogen processing unit pipe rupture releases hydrogen and hydrocarbons that ignite in a 1992 explosion and fires that burn for three days.
- A high-pressure hydrogen line fails in a 1989 fire which buckles the seven-inch-thick steel of a hydrocracker reactor that falls on other nearby Richmond refinery equipment.
- An undetected vessel overpressure causes a 1987 hydrocracker explosion and fire.

These incidents all occurred in the context of crude oil refining. For the reasons described in this section, there is cause for concern that the frequency and severity of these types of hydrogen-related incidents could increase with HEFA processing.

¹²⁹ Id.

¹³⁰ Process Safety Integrity *Refining Incidents;* accessed Feb–Mar 2021; available for download at: <u>https://processsafetyintegrity.com/incidents/industry/refining</u>. Appended hereto as Attachment 32.

3.2.3 <u>The DEIR does not disclose or evaluate the limited effectiveness of current and proposed</u> safeguards against hydrogen-related hazards that the project could worsen

Refiners have the ability to use extra hydrogen to quench, control, and guard against runaway reactions, a measure which has proved partially effective and appears necessary for hydroconversion processing to remain profitable. As a safety measure, however, it has proved ineffective so often that hydro-conversion reactors are equipped to depressurize rapidly to flares.^{131 132} And that last-ditch safeguard, too, has repeatedly failed to prevent catastrophic incidents. The Richmond and Martinez refineries were equipped to depressurize to flares, for example, during the 1989, 1997, 1999 and 2012 incidents described above.¹³³

3.2.4 <u>The DEIR does not disclose or evaluate available site-specific data informing the</u> <u>frequency with which hydrogen-related hazards of the project could manifest</u>

In fact, precisely because it is a last-ditch safeguard, to be used only when all else fails, flaring reveals how frequently these hazards manifest as potentially catastrophic incidents. Despite current safeguards, hydro-conversion and hydrogen-related process safety hazards which their HEFA conversion projects could worsen contribute to significant flaring incidents at the Phillips 66 Rodeo and Marathon Martinez refineries frequently.

Table 8 summarizes specific examples of causal analysis reports for significant flaring which show that hydrogen-related hazard incidents occurred at the refineries a combined total of 100 times from January 2010 through December 2020. This is a conservative estimate, since incidents can cause significant impact without causing environmentally significant flaring. Nevertheless, it represents, on average, and accounting for the Marathon plant closure since 28 April 2020, a hydrogen-related incident frequency at one of these refineries every 39 days.¹³⁴

/

1

¹³¹ Robinson and Dolbear, 2007 (Att. 30).

¹³² Chan, 2020 (Att. 29).

¹³³ Karras, 2021a (Att. 2).

¹³⁴ *Id.*; and BAAQMD *Causal Analysis Reports for Significant Flaring*; Bay Area Air Quality Management District: San Francisco, CA. Reports submitted by Phillips and former owners of the Phillips 66 San Francisco Refinery at Rodeo, and submitted by Marathon and formers owners of the Marathon Martinez Refinery, pursuant to BAAQMD Regulation 12-12-406. Appended hereto as Attachment 33;

Table 8. Examples from 100 hydrogen-related process hazard incidents at the Phillips 66 Rodeo and Marathon Martinez refineries, 2010–2020.

Date ^a	Refinery	Hydrogen-related causal factors reported by the refiner a
3/11/10	Rodeo	A high-level safety alarm during a change in oil feed shuts down Unit 240 hydrocracker hydrogen recycle compressor 2G-202, forcing the sudden shutdown of the hydrocracker
5/13/10	Martinez	A hydrotreater charge pump bearing failure and fire forces #3 HDS hydrotreater shutdown $^{\mbox{\tiny b}}$
9/28/10	Martinez	A hydrocracker charge pump trip leads to a high temperature excursion in hydrocracker reactor catalyst beds that forces sudden unplanned hydrocracker shutdown $^{\rm c}$
2/17/11	Martinez	A hydrogen plant fire caused by process upset after a feed compressor motor short forces the hydrogen plant shutdown; the hydrocracker shuts down on sudden loss of hydrogen
9/10/12	Rodeo	Emergency venting of hydrogen to the air from one hydrogen plant to relieve a hydrogen overpressure as another hydrogen plant starts up ignites in a refinery hydrogen fire
10/4/12	Rodeo	A hydrocracker feed cut due to a hydrogen makeup compressor malfunction exacerbates a reactor bed temperature hot spot, forcing a sudden hydrocracker shutdown ^d
1/11/13	Martinez	Cracked, overheated and "glowing" hydrogen piping forces an emergency hydrogen plant shutdown; the loss of hydrogen forces hydrocracker and hydrotreater shutdowns
4/17/15	Martinez	Cooling pumps trip, tripping the 3HDS hydrogen recycle compressor and forcing a sudden shutdown of the hydrotreater as a safety valve release cloud catches fire in this incident $^{\rm e}$
5/18/15	Rodeo	A hydrocracker hydrogen quench valve failure forces a sudden hydrocracker shutdown f
5/19/15	Martinez	A level valve failure, valve leak and fire result in an emergency hydrotreater shutdown
3/12/16	Rodeo	A Unit 240 level controller malfunction trips off hydrogen recycle compressor G-202, which forces an immediate hydrocracker shutdown to control a runaway reaction hazard ⁹
1/22/17	Martinez	An emergency valve malfunction trips its charge pump, forcing a hydrocracker shutdown
5/16/19	Martinez	A recycle compressor shutdown to fix a failed seal valve forces a hydrocracker shutdown $^{\rm h}$
6/18/19	Martinez	A control malfunction rapidly depressurized hydrogen plant pressure swing absorbers
11/11/19	Rodeo	A failed valve spring shuts down hydrogen plant pressure swing absorbers in a hydrogen plant upset; the resultant loss of hydrogen forces a sudden hydrotreater shutdown ⁱ
2/7/20	Martinez	An unprotected oil pump switch trips a recycle compressor, shutting down a hydrotreater
3/5/20	Rodeo	An offsite ground fault causes a power sag that trips hydrogen make-up compressors, forcing the sudden shutdown of the U246 hydrocracker ^j
10/16/20	Rodeo	A pressure swing absorber valve malfunction shuts down a hydrogen plant; the emergency loss of hydrogen condition results in multiple process unit upsets and shutdowns $^{\rm k}$

a. Starting date of the environmentally significant flaring incident, as defined by Bay Area Air Quality Management District Regulations § 12-12-406, which requires causal analysis by refiners that is summarized in this table. An incident often results in flaring for more than one day. The 100 "unplanned" hydro-conversion flaring incidents these examples illustrate are provided in Attachment 33 (*see* Att. 2 for list). Notes b–k below further describe some of these examples with quotes from refiner causal reports. b. "Flaring was the result of an 'emergency'... the #3 HDS charge pump motor caught fire" c. "One of the reactor beds went 50 degrees above normal with this hotter recycle gas, which automatically triggered the 300 lb/minute emergency depressuring system." d. "The reduction in feed rates exacerbated an existing temperature gradient in D-203 catalyst Bed 4 and Bed 5 ... triggered ... shutdown of Unit 240 Plant 2."
e. "Flaring was the result of an Emergency. 3HDS had to be shutdown in order to control temperatures within the unit as cooling water flow failed." f. "Because hydrocracking is an exothermic process ... [t]o limit temperature rise... [c]old hydrogen quench is injected into the inlet of the intermediate catalyst beds to maintain control of the cracking reactor."
g. "Because G-202 provides hydrogen quench gas which prevents runaway reactions in the hydrocracking reactor, shutdown of G-202 causes an automatic depressuring of the Unit 240 Plant 2 reactor ... " h. "Operations shutdown the Hydrocracker as quickly and safely as possible." i. "[L]oss of hydrogen led to the shutdown of the Unit 250 Diesel Hydrocracker." j. "U246 shut down due to the loss of the G-803 A/B Hydrogen Make-Up compressors."
k. "Refinery Emergency Operating Procedure (REOP)-21 'Emergency Loss of Hydrogen' was implemented."

Sudden unplanned or emergency shutdowns of major hydro-conversion or hydrogen production plants occurred in 84 of these 100 reported process safety hazard incidents.¹³⁵ Such sudden forced shutdowns of *both* hydro-conversion and hydrogen production plants occurred in 22 of these incidents.¹³⁶ In other words, incidents escalated to refinery-level systems involving multiple plants frequently—a foreseeable consequence, given that both hydro-conversion and hydrogen production plants are susceptible to upset when the critical balance of hydrogen production supply and hydrogen demand between them is disrupted suddenly. In four of these incidents, consequences of underlying hazards included fires in the refinery.¹³⁷

3.2.5 <u>The DEIR did not identify significant hydrogen-related process hazard impacts that could</u> result from the project

Since switching to HEFA refining is likely to further increase the frequency and magnitude of these already-frequent significant process hazard incidents, and flaring has proven unable to prevent every incident from escalating to catastrophic proportions, catastrophic consequences of HEFA process hazards are foreseeable.¹³⁸ The DEIR did not identify, evaluate, or mitigate these significant potential impacts of the project.

3.2.6 <u>The DEIR did not identify or evaluate the potential for deferred mitigation of process</u> <u>hazards to foreclose currently feasible hazard prevention measures</u>

As the U.S. Chemical Safety Board found in its investigation of the 2012 Richmond refinery fire: "It is simpler, less expensive, and more effective to introduce inherently safer features during the design process of a facility rather than after the process is already operating. Process upgrades, rebuilds, and repairs are additional opportunities to implement inherent safety concepts."¹³⁹ Thus, licensing or building the project without first specifying inherently safer features to be built into it has the potential to render currently feasible mitigation measures infeasible at a later date. The DEIR does not address this potential. Examples of specific inherently safer measures which the DEIR could have but did not identify or analyze as mitigation for project hazard impacts include, but are not limited to, the following:

¹³⁵ Karras, 2021a (Att. 2); BAAQMD Causal Analysis Reports for Significant Flaring (Att. 33).

¹³⁶ Karras, 2021a (Att. 2); BAAQMD Causal Analysis Reports for Significant Flaring (Att. 33).

¹³⁷ Karras, 2021a (Att. 2); BAAQMD Causal Analysis Reports for Significant Flaring (Att. 33).

¹³⁸ Karras, 2021a (2021).

¹³⁹ CSB, 2015 (Att. 7).

Feedstock processing hazard condition. The County could adopt a project condition to forgo or minimize the use of particularly high process hydrogen demand feedstocks. Since increased process hydrogen demand would be a causal factor for the significant process hazard impacts (§§ 3.2.1–3.2.5) and some HEFA feedstocks increase process hydrogen demand significantly more than other others (§§ 1.2.2, 1.3.1), avoiding feedstocks with that more hazardous processing characteristic would lessen or avoid the hazard impact.

Product slate processing hazard condition. The County could adopt a project condition to forgo or minimize particularly high-process hydrogen demand product slates. Minimizing or avoiding HEFA refining to boost jet fuel yield, which significantly increases hydrogen demand (§§ 1.2.1, 1.2.2), would thereby lessen or avoid further intensified hydrogen reaction hazard impacts.

Hydrogen input processing hazard condition. The County could adopt a project condition to limit hydrogen input per barrel, which could lessen or avoid the process hazard impacts from particularly high-process hydrogen demand feedstocks, product slates, or both.

Hydrogen backup storage processing hazard condition. The County could adopt a project condition to store hydrogen onsite for emergency backup use. This would lessen or avoid hydro-conversion plant incident impacts caused by the sudden loss of hydrogen inputs when hydrogen plants malfunction, a significant factor in escalating incidents as discussed in §§ 3.2.1 and 3.2.4.

Rather than suggesting how or whether the subject project hazard impact could adequately be mitigated, the examples illustrate that the DEIR could have analyzed mitigation measures that are feasible now, and whether deferring those measures might render them infeasible later.

3.3 Uncertain Degree of Project Safety Oversight

Of additional concern, it is not clear at present whether the process safety requirements currently applicable to petroleum refineries in California will be fully applicable requirements applied to the proposed biofuel refinery, and the DEIR does not disclose this uncertainty.

CONCLUSION: There is a reasonable potential for the proposed changes in refinery feedstock processing to result in specific hazard impacts involving hydro-conversion processing, including explosion and uncontrolled refinery fire, in excess of those associated with historic petroleum crude refining operations. The DEIR did not identify, evaluate, or mitigate these significant process hazard impacts that could result from the project.

4. AIR QUALITY AND HAZARD RELEASE IMPACTS OF PROJECT FLARING THAT AVAILABLE EVIDENCE INDICATES WOULD BE SIGNIFICANT ARE NOT IDENTIFIED, EVALUATED, OR MITIGATED IN THE DEIR

For the reasons discussed above, the project would introduce new hazards that can be expected to result in new hazard incidents that involve significant flaring, and would be likely increase the frequency of significant flaring. Based on additional available evidence, the episodic releases of hazardous materials from flares would result in acute exposures to air pollutants and significant impacts. The DEIR does not evaluate the project flaring impacts or their potential significance and commits a fundamental error which obscures these impacts.

4.1 The DEIR Did Not Evaluate Environmental Impacts of Project Flaring

Use of refinery flare systems—equipment to rapidly depressurize process vessels and pipe their contents to uncontrolled open-air combustion in flares—is included in the project.¹⁴⁰ The DEIR acknowledges this use of flaring to partially mitigate process hazard incidents¹⁴¹ and that the flares emit combusted gases.¹⁴² However, the DEIR does not discuss potential environmental impacts of project flaring anywhere in its 628 pages. The DEIR does not disclose or mention readily available data showing frequently recurrent significant flaring at the refinery that is documented and discussed in §3.2.4 above, or any other site-specific flare impact data. This represents an enormous gap in its environmental analysis.

4.2 The DEIR Did Not Identify, Evaluate, or Mitigate Significant Potential Flare Impacts That Could Result from the Project

Had the DEIR assessed available flare frequency, magnitude and causal factors information, the County could have found that project flaring impacts would be significant, as discussed below.

4.2.1 <u>The DEIR did not consider incidence data that indicate the potential for significant</u> project flaring impacts

Flaring emits a mix of many toxic and smog forming air pollutants—particulate matter, hydrocarbons ranging from polycyclic aromatics to methane, sulfur dioxide, hydrogen sulfide, and others—from partially burning off enormous gas flows. Most of the 100 significant flaring incidents documented and described in subsection 3.2.4 above flared more than two million

¹⁴⁰ DEIR p. 3-29.

¹⁴¹ DEIR pp. 3-15, 3-17.

¹⁴² DEIR p. 3-17.

standard cubic feet (SCF) of vent gas each, and many flared more than ten million SCF.¹⁴³ The plumes cross into surrounding communities, where people experience acute exposures to flared pollutants repeatedly, at levels of severity and at specific locations which vary with the specifics of the incident and atmospheric conditions at the time when flaring recurs.

In 2005, flaring was linked to episodically elevated localized air pollution by analyses of a continuous, flare activity-paired, four-year series of hourly measurements in the ambient air near the fence lines of four Bay Area refineries.¹⁴⁴ By 2006, the regional air quality management district independently confirmed the link, assessed community-level impacts, and set environmental significance thresholds for refinery flares.¹⁴⁵ ¹⁴⁶ These same significance thresholds were used to require Phillips 66 and Marathon to report the flare incident data described in subsection 3.2.4 and in this subsection above.¹⁴⁷ ¹⁴⁸

Thus, each of the hundred hydrogen-related flaring incidents since 2010 at the Phillips 66 Rodeo and Marathon Martinez refineries *individually* exceeded a relevant significance threshold for air quality. New hazard incidents, and hence flare incidents, can be expected to result from repurposing the same process units that flared without removing the underlying causes for that flaring, which is what implementing the project would do.¹⁴⁹ Consequently, the proposed project can be expected to result in significant episodic air pollution impacts.

4.2.2 <u>The DEIR did not consider causal evidence that indicates project flare incident rates have</u> the potential to exceed those of historic petroleum crude refining

Further, the project would do more than repurpose the same process units that flare without removing the underlying causes for that flaring. The project would switch to new and very different feeds with new corrosion and mechanical integrity hazards, new chemical hydrogen

¹⁴³ Karras, 2021a (Att. 2).

¹⁴⁴ Karras and Hernandez, 2005. *Flaring Hot Spots: Assessment of episodic local air pollution associated with oil refinery flaring using sulfur as a tracer;* Communities for a Better Environment: Oakland and Huntington Park, CA. Appended hereto at Attachment 34.

 ¹⁴⁵ Ezersky, 2006. Staff Report: Proposed Amendments to Regulation 12, Miscellaneous Standards of Performance, Rule 12, Flares at Petroleum Refineries; 3 March 2006. Planning and Research Division, Bay Area Air Quality Management District: San Francisco, CA. See esp. pp. 5–8, 13, 14. Appended hereto as Attachment 35.
 ¹⁴⁶ BAAQMD Regulations, § 12-12-406. Bay Area Air Quality Management District: San Francisco, CA. See

Regulation 12, Rule 12, at: <u>https://www.baaqmd.gov/rules-and-compliance/current-rules</u> ¹⁴⁷ *Id*

¹⁴⁸ BAAQMD Causal Reports for Significant Flaring (Att. 33).

¹⁴⁹ Section 3 herein; Karras, 2021a (Att. 2).

demands and extremes in reaction heat runaways, in processes and systems prone to potentially severe damage from these very causal mechanisms; damage it would attempt to avoid by flaring. *See* Section 3. It is thus reasonably likely that compared with historic crude refining, the new HEFA process hazards might more frequently manifest in refinery incidents (*Id.*), hence flaring.

4.2.3 The DEIR did not assess flare impact frequency, magnitude, or causal factors

As stated, the DEIR does not discuss potential environmental impacts of project flaring. It does not disclose, discuss, evaluate or otherwise address any of the readily available data, evidence or information described in this subsection (§ 4.2).

4.3 An Exposure Assessment Error in the DEIR Invalidates its Impact Conclusion and Obscures Project Flare Impacts

A fundamental error in the DEIR obscures flare impacts. The DEIR ignores acute exposures to air pollution from episodic releases entirely to conclude that air quality impacts from project refining would not be significant based only on long-term annual averages of emissions.¹⁵⁰ The danger in the error may best be illustrated by example: The same mass of hydrogen sulfide emission into the air that people nearby breathe without perceiving even its noxious odor when it is emitted continuously over a year can kill people *in five minutes* when that "annual average" emits all at once in an episodic release.¹⁵¹ Acute and chronic exposure impacts differ.

4.3.1 <u>The DEIR air quality analysis failed to consider the environmental setting of the project</u> An episodic refinery release can cause locally elevated ambient air pollution for hours or days with little or no effect on refinery emissions averaged over the year. At the same time, people in the plume released cannot hold their breath more than minutes and can experience toxicity due to inhalation exposure. In concluding the project would cause no significant air quality impact without considering impacts from acute exposures to episodic releases, the DEIR did not properly consider these crucial features of the project environmental setting.

/

/

¹⁵⁰ DEIR pp. 4.3-52 through 4.3-56 and 4.3-69 through 4.3-72. *See* also pp. 3-37 through 3.39.

¹⁵¹ Based on H₂S inhalation thresholds of 0.025–8.00 parts per million for perceptible odor and 1,000–2,000 ppm for respiratory paralysis followed by coma and death within seconds to minutes of exposure. <u>See</u> Sigma-Aldrich, 2021. *Safety Data Sheet: Hydrogen Sulfide;* Merck KGaA: Darmstadt, DE. Appended hereto as Attachment 36.

4.3.2 <u>The DEIR air quality analysis failed to consider toxicological principles and practices</u> The vital need to consider both exposure concentration and exposure duration has been a point of consensus among industrial and environmental toxicologists for decades. This consensus has supported, for example, the different criteria pollutant concentrations associated with a range of exposure durations from 1-hour to 1-year in air quality standards that the DEIR itself reports.¹⁵² Rather than providing any factual support for concluding impacts are not significant based on analysis that excludes acute exposures to episodic releases, the science conclusively rebuts that analytical error in the DEIR.

4.3.3 <u>The DEIR air quality analysis failed to consider authoritative findings and standards that</u> indicate project flaring would exceed a community air quality impact threshold

Crucially, the Bay Area Air Quality Management District adopted the significance threshold for flaring discussed above based on *one-hour* measurements and modeling of flare plumes, which, it found, "show an impact on the nearby community."¹⁵³ On this basis the District further found that its action to adopt that significance threshold "will lessen the emissions impact of flaring on those who live and work within affected areas."¹⁵⁴ Thus the factual basis for finding flaring impacts significant is precisely the evidence that the DEIR ignores in wrongly concluding that project refining impacts on air quality are not significant.

CONCLUSION: The project is likely to result in a significant air quality impact associated with flaring, and has reasonable potential to worsen this impact compared with historic petroleum crude refining operations at the site. The DEIR does not identify, evaluate, or analyze measures to lessen or avoid this significant potential impact.

/

/

- /
- /
- /

¹⁵² DEIR pp. 4.3-37, 4.3-38; tables 4.3-1, 4.3-2.

¹⁵³ Ezersky, 2006 (Att. 35).

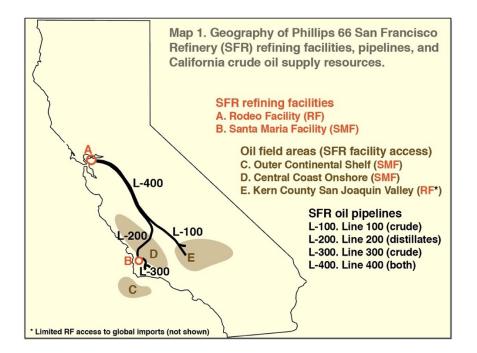
¹⁵⁴ Id.

5. THE DEIR OBSCURES THE SIGNIFICANCE OF PROJECT IMPACTS BY ASSERTING AN INFLATED ALTERNATIVE BASELINE WITHOUT FACTUAL SUPPORT

Finding the San Francisco Refining Complex (SFC)¹⁵⁵ emitted at lower than historic rates in 2020, the DEIR compares project impacts with near-term future conditions based on historic emissions.¹⁵⁶ Its baseline does not represent existing conditions when the project was proposed; it looks backward for snapshots of historic conditions to compare with project impacts.

The DEIR argues that its backward-looking baseline better represents future conditions than 2020 due to COVID-19.¹⁵⁷ But it provides no factual support for assuming that COVID-19 caused all of the SFC crude rate cut in 2020, or that the past represents the future. The DEIR baseline analysis does not disclose, accurately describe, or evaluate available evidence that a worsening crude supply limitation, unique to the SFC, forced it to cut feed rate. As a result the DEIR compares project impacts with an inflated baseline, which obscures the significance of project impacts, and causes its environmental impacts evaluation to be inaccurate.

5.1 The DEIR Baseline Analysis Does Not Provide or Evaluate a Complete or Accurate Description of the Unique SFC Configuration and Setting Which Affect Baseline Operations by Creating a Unique Feedstock Supply Limitation


5.1.1 <u>The DEIR baseline analysis provides an incomplete, inaccurate and misleading</u> <u>description of the unique physical SFC configuration, its unique geographic setting, and</u> <u>its resultant limited access to petroleum resources for refinery feedstock</u>

The DEIR does not disclose, evaluate, or accurately describe the functional interdependence of SFC components, their unique geography, and the resultant unique limitations in accessible crude feedstock for the SFC. Map 1 illustrates the unique geographic distribution of SFC components in relation to the landlocked crude resources that the SFC was uniquely designed to access for feedstock.¹⁵⁸ The Rodeo Refining Facility (RF) of the SFC ("A" in Map 1) receives most of its oil feed as crude from San Joaquin Valley oilfields ("E") that is blended with, and crucially, thinned by, oils processed in its Santa Maria Refining Facility (SMF) ("B") from crude that its pipeline system collects from offshore ("C") and onshore ("D") Central Coast oilfields.

 ¹⁵⁵ The San Francisco Refining Complex (SFC) includes its Rodeo Refining Facility (RF), Santa Maria Refining Facility (SMF) and pipelines that feed crude to the SMF and crude blended with semi-refined oil to the RF.
 ¹⁵⁶ DEIR pp. 3-37 through 3-39; see also pp. 3-21, 5-12. Note that the DEIR picks different historic baseline periods for comparison with refinery (2019) and marine vessel (2017–2019) emissions.

¹⁵⁷ Id.

¹⁵⁸ Map 1 is only approximately to scale, but otherwise consistent with facility and pipeline maps in the DEIR.

The SMF ("B") has no seaport access to import foreign or Alaskan crude via marine vessels¹⁵⁹ which other refineries rely on for most of the crude refined statewide.¹⁶⁰ It receives crude only via its locally-connected pipeline, limiting its access to crude from outside the local area almost entirely.¹⁶¹ Onshore oilfields in San Luis Obispo, northern Santa Barbara and southern Monterey counties ("D") feed the SMF through the local pipeline system, either via other local pipelines connected to it or via trucks unloading into a pump station, which is limited to roughly half of the SMF capacity.¹⁶² Outer Continental Shelf (OCS) oilfields off northern Santa Barbara County supplied up to 85% of SMF crude as of 2014,¹⁶³ but that 85% came from only a few OCS fields ("C") which had pipeline connections to the local SMF pipeline system ("L-300").¹⁶⁴

The DEIR does not disclose the lack of SMF seaport access—which crucially limits its feed access almost entirely to local OCS and onshore crude—then obscures the larger effect of this on

¹⁵⁹ SLOC, 2014. *Phillips 66 Company Rail Spur Extension and Crude Unloading Project Revised Public Draft Environmental Impact Report;* prepared for San Luis Obispo County (SLOC) by Marine Research Specialists (MRS). October 2014. SCH# 2013071028. Excerpt including title page and project description. Appended hereto as Attachment 37.

¹⁶⁰ *Crude Oil Sources for California Refineries;* California Energy Commission: Sacramento, CA. (CEC, 2021a). Appended hereto as Attachment 38.

¹⁶¹ SLOC, 2014 (Att. 37).

¹⁶² *Id*.

¹⁶³ Id.

¹⁶⁴ These OCS oilfields that the SMF could historically or currently access via pipelines are the Point Pedernales, Point Arguello, Hondo, Pescado, and Sacate fields. <u>See</u> BOEM, 2021b (map appended hereto as Attachment 44).

the project baseline through clear error in its setting description. SFC pipeline system Line 100 ("L-100" in Map 1) runs from Kern County oilfields in the San Joaquin Valley ("E") north to the junction with Line 200 from the SMF and Line 400 to the RF, where the Kern crude and semi-refined SMF output flow north through Line 400 to the RF.¹⁶⁵ But the DEIR describes Line 100 as directly supplying the SMF: "Two other pipelines—Line 100 and Line 300—*connect the Santa Maria Site* to crude oil collection facilities elsewhere in California ... [including] Kern County" DEIR at 3-21 (*emphasis added*). This clear error in the DEIR obscures the fact that the SMF lacks economic access to San Joaquin oilfields—and further obscures the mix of oils flowing through Line 400 to the RF.

These existing conditions in the project setting that the DEIR omits or describes inaccurately have a profound systemic effect on the project baseline. Instead of pipeline access to the largest regional crude resource in California¹⁶⁶ as the DEIR wrongly describes, the SMF lacks both that access, and seaport access to imports that provide the largest source of crude refined statewide,¹⁶⁷ which the DEIR also fails to disclose. That doubly limited access makes SMF operations exceptionally vulnerable to loss of local crude supply. The systemic effect has to do with how changes in the mix of San Joaquin Valley crude and semi-refined oils from the SMF flowing to the RF—that mix in the pipe to the RF being a fact the error in the DEIR described above also obscures—could limit crude supply for the RF.

The DEIR states that the entire pipeline system would shutter in place when the SMF closes, providing that conclusion as a reason for the "transitional" increase in permitted crude inputs to the RF through its marine terminal. It further concludes that continued crude refining would be infeasible at the RF if the RF loses access to crude and semi-refined oils from the SMF and pipeline system.¹⁶⁸ Although the DEIR does not explain this, a reason the pipeline system may not continue to function after closure of the SMF is that lines 100 and 400 cannot physically

 ¹⁶⁵ Careful review of DEIR Figure 3-5 confirms this description of pipeline flows, once the reader knows that crude *does not* flow to the SMF through Line 200. Without knowing that, however, the erroneous assertion in the text on page 3-21 of the DEIR and its Figure 3-5 can only be viewed to make sense together by assuming the opposite.
 ¹⁶⁶ San Joaquin Valley extraction in District 4 (Kern, Tulare, and Inyo counties) comprised 71% of California crude extracted, 445% more than any other oil resource district in the state, in 2017. <u>See</u> DOGGR, 2017. 2017 Report of California Oil and Gas Production Statistics; California Department of Conservation, Division of Oil, Gas, & Geothermal Resources: Sacramento, CA. Appended hereto as Attachment 39.

¹⁶⁷ CEC, 2021a (Att. 38).

¹⁶⁸ DEIR p. 5-3.

function effectively without input from the SMF. The less viscous SMF output¹⁶⁹ thins the viscous (thick like molasses) San Joaquin Valley Heavy crude ("E" in Map 1), enabling it to move efficiently through Line 400 ("L-400") to the RF. Loss of SMF feed input and hence Line 400 thinning oil could effectively *disable* the pipeline feedstock supply for the RF. This is the profound systemic effect that severely limited SMF access to crude could cause.

Thus, the exceptional vulnerability to local crude supply loss described above is a critical condition affecting the SMF, RF, and entire San Francisco Refining Complex.

No other California refinery is built to access isolated crude resources for its feed with landlocked front-end refining hundreds of pipeline miles from its back-end refining, and no other faces the feed supply crisis this built-in reliance on geographically limited and finite resources has wrought. The DEIR does not disclose or evaluate this crisis in its baseline analysis.

5.2 The DEIR Baseline Analysis Does Not Disclose or Evaluate Actions by the Refiner and Others Which Demonstrate Their Concerns that Feedstock Supply Limitations Could Affect Near Term Future Refinery Operating Conditions

Actions by Phillips 66 and others prior to and outside the project review demonstrated their concerns that the feedstock supply limitation discussed above could affect near-term future operating conditions. The DEIR does not disclose or evaluate the actions discussed below.

5.2.1 <u>Phillips 66 action to expand marine vessel imports warned of refinery curtailment risk</u> On 6 September 2019 Carl Perkins, then the Phillips 66 Rodeo Facility manager, wrote Jack Broadbent, the Executive Director of the Bay Area Air Quality Management District, offering "concessions" in return for advancing a proposal by the refiner to increase crude and gas oil imports to the RF via marine vessels.¹⁷⁰ Perkins stated that proposal—which was never approved or implemented—would "greatly enhance the continued viability of the Rodeo Refinery if and when California-produced crude oil becomes restricted in quantity or generally unavailable as a refinery process input."¹⁷¹ Perkins further stated that the refiner "seeks to ensure

¹⁶⁹ Naphtha, distillates and gas oil ("pressure distillate") from crude accessed and partially refined by the SMF, then sent through lines 200 and 400 to the RF for gasoline, diesel, and jet fuel production.

 ¹⁷⁰ Perkins, 2019. Phillips 66 correspondence regarding Bay Area Air Quality Management District Permit Application No. 25608. Appended hereto as Attachment 40.
 ¹⁷¹ Id.

a reliable crude oil supply for the future. If this potential process input problem is not resolved, it could lead to processing rate curtailments at the refinery"¹⁷²

5.2.2 Army Engineers proposal to improve access to crude imports by dredging Bay

On 17 May 2019 the U.S. Army Corps of Engineers released a Draft Environmental Impact Statement for its proposal to relieve a shipping bottleneck affecting the Phillips 66 RF and three other refineries that import crude through the San Francisco Bay by dredging to deepen some shipping channels between Richmond to east of Martinez (Avon).¹⁷³ Benefits to the refiners from the proposal—which was never approved or implemented—including improved access to crude imports and fuels exports, but excluding the anticipated growth in their petroleum tanker cargoes, could have exceeded \$11,300,000 per year.¹⁷⁴

5.2.3 Phillips 66 action to expand access to crude imports via oil trains

Before its warning to the Bay Area Air Quality Management District described above, and before applying to that air district for expanded crude imports through the RF marine terminal, Phillips 66 sought access to new sources of crude via oil trains which would unload crude imported from other U.S. states and Canada at a proposed new SMF rail spur extension.¹⁷⁵

5.2.4 San Luis Obispo County review of proposed Phillips 66 SMF rail spur extension

Permits for that rail spur extension were denied and it was never built. In its review of the proposed rail spur, San Luis Obispo County described the limited SMF access to competitively priced crude. Its report previewed, during 2014, the 2019 warning by Phillips 66 described herein above: "Phillips 66 would like to benefit from these competitively priced crudes. In the short-term (three to five years), the availability of these competitively priced crudes would be the main driver Production from offshore Santa Barbara County (OCS crude) has been in decline for a number of years. In the long-term, the ... remaining life of the refinery is dependent on crude oil supplies, prices and overall economics."¹⁷⁶

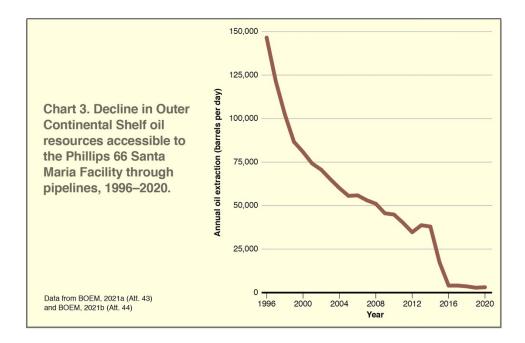
¹⁷² *Id*.

¹⁷³ ACOE, 2019, Draft Integrated General Reevaluation Report and Environmental Impact Statement, San Francisco Bay to Stockton, California Navigation Study. Army Corps of Engineers: Jacksonville, FL. EIS and Appendix D to EIS. Appended hereto as Attachment 41. <u>See pp. ES-3</u>, D-22, D-24, maps. ¹⁷⁴ Id

¹⁷⁵ SLOC, 2014 (Att. 37). ¹⁷⁶ *Id*.

Other more recent actions, which the DEIR likewise does not disclose or evaluate, suggest that the lack of access to crude has now become acute for the SMF. By 2017, ExxonMobil proposed to temporarily truck crude to the SMF, a proposal that the Santa Barbara County Planning Commission later voted to deny.¹⁷⁷ Finally, Phillips 66 abandoned its proposed SMF pipeline replacement project in August 2020.¹⁷⁸ This fact strongly suggests that the company's plan to decommission the SMF was developed independently from the subject project, and was already underway before Phillips 66 filed its Application for the project with the County.

5.3 The DEIR Does Not Disclose or Evaluate Available Data and Information That Confirm the Crude Supply Limitation Affects Current SFC Operating Conditions and Strongly Suggest the Potential for Near Term SFC Facilities Closure


Abundant relevant data that the DEIR did not disclose or evaluate have been reported publicly by the state and federal governments. Together with the data and information provided herein above, these data support findings that available evidence indicates crude supply limitations have forced SFC refining rates below historic pre-2020 conditions, and that the SFC would be more likely to shutter crude refining operations in the near future than return to and maintain historic refining rates. Had the DEIR properly disclosed and evaluated this evidence, the County could have found that the comparison in the DEIR of project impacts with impacts caused at historic refining rates is unsupported, and inaccurate.

5.3.1 <u>Federal crude extraction data pertinent to the project baseline confirm a sharp decline in</u> the major historic source of crude refined by the SMF

Chart 3 illustrates U.S. Bureau of Ocean Energy Management (BOEM) crude production data¹⁷⁹ for OCS oilfields that the SMF historically and currently could access via pipelines connected to the local SMF pipeline system.¹⁸⁰ Crude production from OCS oilfields that historically supplied the vast majority of SMF crude feed (§ 5.1.1) continued in steep long-term decline after the 2014 San Luis Obispo County analysis (§ 5.2.4). *See* Chart 3.

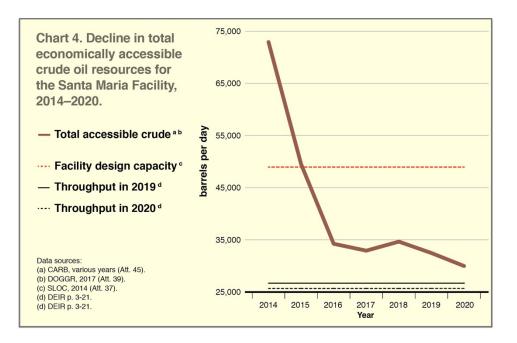
¹⁷⁷ SBC, 2021. *ExxonMobil Interim Trucking for SYU Phased Restart Project Status, Description, Timeline;* Santa Barbara County Department of Planning & Development. Website page accessed 18 November 2021. Appended hereto as Attachment 42.

 ¹⁷⁸ Scully, J., 2020. Phillips 66 Plans 2023 Closure of Santa Maria Refinery, Pulls Application for Pipeline Project. https://www.noozhawk.com/article/phillips_66_closure_of_santa_maria_refinery_planned_for_2023_20200813
 ¹⁷⁹ BOEM, 2021a. U.S. Bureau of Ocean Energy Management. *Pacific Production;* data Pacific OCS Region data, 1996–2021. https://www.data.boem.gov/Main/PacificProduction.aspx#ascii. Appended hereto as Attachment 43.
 ¹⁸⁰ BOEM, 2021b. U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement/Bureau of Ocean Energy Management, Pacific OCS Region. Map updated May 2021. Appended hereto as Attachment 44.

From an annual average of approximately 146,000 b/d in 1996, OCS oil production in these oilfields,¹⁸¹ collectively, fell by 98% to approximately 3,000 b/d in 2020.¹⁸²

5.3.2 <u>State crude refining data pertinent to the project baseline confirm that declining access to</u> <u>crude feedstock forced SFC refining rates below historic rates and, together with other</u> <u>relevant available data, strongly suggest the potential for the crude refinery to shutter</u>

The California Air Resources Board (CARB)¹⁸³ and Geologic Energy Management Division (CalGEM, formerly DOGGR)¹⁸⁴ each collected data that in combination quantify and locate the annual amounts of crude refined in California from each OCS and State offshore and onshore oilfield. Chart 4 illustrates these state data for the annual volumes of crude refined in California which were derived from OCS and onshore oilfields that the SMF can access.¹⁸⁵


¹⁸¹ These OCS oilfields that the SMF could historically or currently access via pipelines are the Point Pedernales, Point Arguello, Hondo, Pescado, and Sacate fields. <u>See</u> BOEM, 2021b (Att. 44).

¹⁸² BOEM, 2021a (Att. 43).

¹⁸³ CARB, various years. *Calculation of Crude Average Carbon Intensity Values;* California Air Resources Board: Sacramento, CA. *In* LCFS Crude Oil Life Cycle Assessment, Final California Crude Average Carbon Intensity Values. Accessed October 2021. https://ww2.arb.ca.gov/resources/documents/lcfs-crude-oil-life-cycle-assessment. Appended hereto as Attachment 45.

¹⁸⁴ DOGGR, 2017 (Att. 39).

¹⁸⁵ Based on evidence described in §§ 5.1 and 5.2 herein, Chart 4 includes all onshore and State offshore fields identified by DOGGR, 2017 (Att. 46) in District 3, and OCS oilfields included in Chart 3 as noted above, and optimistically assumes that no other California refiner competes for access to their production.

The falling brown curve in Chart 4 illustrates the rapid decline in total crude accessible to the SMF that was refined statewide since 2014. Most importantly, its fall below the dashed red line indicates that this dwindling crude supply could no longer support Santa Maria Facility operation at or even near its design capacity.

From approximately 73,000 b/d in 2014, total refining of Central Coast onshore, offshore, and OCS crude accessible to the SMF via truck and pipeline fell by 59%, to approximately 30,000 b/d in 2020.¹⁸⁶

In 2019, before COVID-19, the SMF was operating at only 26,700 b/d,¹⁸⁷ 45% below its 48,950 b/d capacity.¹⁸⁸ ¹⁸⁹ In 2020, as accessible crude fell by roughly another 2,000 b/d,¹⁹⁰ the SMF cut rate by another 1,000 b/d to 25,700 b/d,¹⁹¹ fully 47% below its design capacity.

¹⁹¹ DEIR p. 3-21.

¹⁸⁶ CARB, various years (Att. 45); DOGGR, 2017 (Att. 39).

¹⁸⁷ DEIR p. 3-21.

¹⁸⁸ SLOC, 2014 (Att. 37).

¹⁸⁹ This very low SMF refining rate in 2019 reduced SMF output to the RF and likely reduced its capacity to thin and enable movement of viscous San Joaquin Valley crude through Line 400 to the RF. The County could have evaluated this likelihood had it requested the data to do so from Phillips 66 as necessary for project review. ¹⁹⁰ CARB, various years (Att. 45); DOGGR, 2017 (Att. 39).

5.3.3 <u>Baseline analysis errors in the DEIR inflated the project baseline, obscured the</u> <u>significance of project impacts in comparison with that inflated baseline, and resulted in a</u> <u>deficient environmental impacts evaluation</u>

As stated, its errors and omissions resulted in the DEIR comparing project impacts with those from refining crude at a greater rate than observed when the project was proposed and a greater rate than the SFC can reasonably be expected to reach and maintain in the near future. Comparing project impacts with this inflated baseline artificially reduced the significance of project impacts it predicted. This erroneously reduced the significance of DEIR impact findings.

5.4 The DEIR No Project Analysis Commits a Categorical Error that Conflates the Crude Supply Limitation with Fuel Supply Limits Irrelevant to Project Baseline

Elsewhere in the DEIR it asserts that decommissioning the refinery is not the "no project" alternative since shuttering the refinery is infeasible at least in part because petroleum fuels market forces would not allow that result. In point of fact the DEIR has it exactly backwards: fuels demand cannot cause a refinery to make fuels when the refinery cannot get the crude to make the fuels due to structural rather than market-based factors. The DEIR commits a categorical error that conflates the causal factor affecting specific baseline conditions with another factor that is irrelevant to these specific conditions because it could not affect them. In other contexts fears that imports and prices could soar without the SCF can be eased by pointing out that statewide refining overcapacity far exceeds its capacity (§ 2.2), but here, the DEIR fuels supply-demand question itself is not relevant to project baseline conditions.

CONCLUSION: The DEIR did not disclose or evaluate abundant evidence that worsening crude supply losses drove the refinery feed rates below historic levels by the time the project was proposed. This evidence further suggests the refinery would be more likely to close than return to and maintain historic crude rates in the near future. Instead of evaluating this evidence, the DEIR concluded that historic conditions it explicitly found to result in more severe impacts than conditions at the time the project was proposed should be compared with potential impacts that could result from the project. Reliance on that factually unsupported and inflated baseline would systematically and artificially reduce the significance of project impacts findings.

CONCLUSIONS

1. The DEIR provides an incomplete, inaccurate, and truncated description of the proposed project. Available information that the DEIR does not describe or disclose will be necessary for sufficient review of environmental impacts that could result from the project.

2. A reasonable potential exists for the project to result in significant climate and air quality impacts by increasing the production and export of California-refined fuels instead of replacing petroleum fuels. This impact would be related to the particular type and use of biofuel proposed. Resultant greenhouse gases and co-pollutants would emit in California from excess petroleum and biofuel refining, and emit in California as well as in other states and nations from petroleum and biofuel feedstock extraction and end-use fuel combustion. The DEIR does not identify, evaluate, or mitigate these significant potential impacts of the project.

3. There is a reasonable potential for the proposed changes in refinery feedstock processing to result in specific hazard impacts involving hydro-conversion processing, including explosion and uncontrolled refinery fire, in excess of those associated with historic petroleum crude refining operations. The DEIR did not identify, evaluate, or mitigate these significant process hazard impacts that could result from the project.

4. The project is likely to result in a significant air quality impact associated with flaring, and has reasonable potential to worsen this impact compared with historic petroleum crude refining operations at the site. The DEIR does not identify, evaluate, or analyze measures to lessen or avoid, this significant potential impact.

5. The DEIR did not disclose or evaluate abundant evidence that worsening crude supply losses drove the refinery feed rates below historic levels by the time the project was proposed. This evidence further suggests the refinery would be more likely to close than return to and maintain historic crude rates in the near future. Instead of evaluating this evidence, the DEIR concluded that historic conditions it explicitly found to result in more severe impacts than conditions at the time the project was proposed should be compared with potential impacts that could result from the project. Reliance on that factually unsupported and inflated baseline would systematically and artificially reduce the significance of project impacts findings.

Attachments List

1. Curriculum Vitae and Publications List

2. Karras, 2021a. *Changing Hydrocarbons Midstream: Fuel chain carbon lock-in potential of crude-to-biofuel petroleum refinery repurposing;* prepared for the Natural Resources Defense Council (NRDC) by Greg Karras, G. Karras Consulting. August 2021.

3. Karras. 2021b. Unsustainable Aviation Fuels: An assessment of carbon emission and sink impacts from biorefining and feedstock choices for producing jet biofuel from repurposed crude refineries; Natural Resources Defense Council (NRDC). Prepared for the NRDC by Greg Karras, G. Karras Consulting.

4. USDOE, 2021. *Renewable Hydrocarbon Biofuels;* U.S. Department of Energy, accessed 29 Nov 2021 at https://afdc.energy.gov/fuels/emerging hydrocarbon.html

5. Chevron Refinery Modernization Project, SCH# 2011062042, DEIR Appendix 4.3–URM: Unit Rate Model.

6. Karras, 2010. Combustion Emissions from Refining Lower Quality Oil: What is the global warming potential? *Environ. Sci. Technol.* 44(24): 9584–9589. DOI: 10.1021/es1019965.

7. CSB, 2013. *Interim Investigation Report, Chevron Richmond Refinery Fire;* U.S. Chemical Safety Board: Washington, D.C. https://www.csb.gov/file.aspx?Documentid=5913.

8. API, 2009. *Guidelines for Avoiding Sulfidation (Sulfidic) Corrosion Failures in Oil Refineries;* API Recommended Practice 939-C. First Edition, May 2009. American Petroleum Institute: Washington, D.C.

9. Krogh et al., 2015. *Crude Injustice on the Rails: Race and the disparate risk from oil trains in California;* Communities for a Better Environment and ForestEthics. June 2015.

10. Karras, 2020. *Decommissioning California Refineries: Climate and Health Paths in an Oil State;* A Report for Communities for a Better Environment. Prepared by Greg Karras. Includes Supporting Material Appendix.

11. USEIA, 2015. West Coast Transportation Fuels Markets; U.S. Energy Information Administration: Washington, D.C. <u>https://www.eia.gov/analysis/transportationfuels/padd5/</u>

12. USEIA, *Supply and Disposition: West Coast (PADD 5);* U.S. Energy Information Administration: Washington, D.C. www.eia.gov/dnav/pet/pet_sum_snd_d_r50_mbbl_m_cur.htm.

13. Phillips 66 1Q 2021 Earnings Transcript. First Quarter 2021 Earnings Call; Phillips 66 (NYSE: PSX) 30 April 2021, 12 p.m. ET. Transcript.

14. BAAQMD, 2021. 9 Sep 2021 email from Damian Breen, Senior Deputy Executive Officer – Operations, Bay Area Air Quality Management District, to Ann Alexander, NRDC, regarding Phillips 66 refinery (no. 21359) – possible unpermitted modifications.

15. Kupp, 2020a. Email text and attached site map from Gary Kupp, Contra Costa County, to Charles Davidson, incoming Rodeo-Hercules Fire Protection District director. 2 December 2020.

16. Phillips 66 3Q 2021 Earnings Conference Call; 29 Oct 2021, 12 p.m. ET. Transcript.

17. Weinberg-Lynn, 2021. 23 July 2021 email from Nikolas Weinberg-Lynn, Manager, Renewable Energy Projects, Phillips 66, to Charles Davidson.

18. Bredeson et al., 2010. Factors driving refinery CO₂ intensity, with allocation into products. *Int. J. Life Cycle Assess.* 15:817–826. DOI: 10.1007/s11367-010-0204-3.

19. Abella and Bergerson, 2012. Model to Investigate Energy and Greenhouse Gas Emissions Implications of Refining Petroleum: Impacts of Crude Quality and Refinery Configuration. *Environ. Sci. Technol.* 46: 13037–13047. dx.doi.org/10.1021/es3018682.

20. CEC *Fuel Watch*. Weekly Refinery Production. California Energy Commission: Sacramento, CA. https://ww2.energy.ca.gov/almanac/petroleum_data/fuels_watch/output.php

21. CARB GHG Inventory. *Fuel Activity for California's Greenhouse Gas Inventory by Sector and Activity; 14th ed.: 2000 to 2019;* California Air Resources Board: Sacramento, CA. https://ww2.arb.ca.gov/ghg-inventory-data

22. CDTFA, various years. *Fuel Taxes Statistics & Reports;* California Department of Tax and Fee Administration: Sacramento, CA. https://www.cdtfa.ca.gov/taxes-and-fees/spftrpts.htm.

23. USEIA *Refinery Capacity by Individual Refinery*. Data as of January 1, 2021; U.S. Energy Information Administration: Washington, D.C. www.eia.gov/petroleum/refinerycapacity

24. USEIA *Refinery Utilization and Capacity*. PADD 5 data as of Sep 2021. U.S. Energy Inf. Administration: Washington, D.C. www.eia.gov/dnav/pet/pet_pnp_unc_dcu_r50_m.htm

25. Pearlson et al., 2013. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. *Biofuels, Bioprod. Bioref.* 7: 89–96. DOI: 10.1002/bbb.1378.

26. Pastor et al., 2010. *Minding the Climate Gap: What's at stake if California's climate law isn't done right and right away;* College of Natural Resources, Department of Environmental Science, Policy, and Management, University of California, Berkeley: Berkeley, CA; and Program for Environmental and Regional Equity, University of Southern California: Los Angeles, CA.

27. Clark et al, 2017. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: Outdoor nitrogen dioxide in the United States in 2000 and 2010. *Environmental Health Perspectives* 097012-1 to 097012-10. 10.1289/EHP959.

28. Zhao et al., 2019. Air quality and health co-benefits of different deep decarbonization pathways in California. *Environ. Sci. Technol.* 53: 7163–7171. DOI: 10.1021/acs.est.9b02385.

29. Chan, 2020. *Converting a Petroleum Diesel Refinery for Renewable Diesel;* White Paper / Renewable Diesel. Burns McDonnell. www.burnsmcd.com.

30. Robinson and Dolbear, 2007. Commercial Hydrotreating and Hydrocracking. *In:* Hydroprocessing of heavy oils and residua. Ancheyta, J., and Speight, J., eds. CRC Press, Taylor & Francis Group: Boca Raton, FL. ISBN-13: 978-0-8493-7419-7.

31. van Dyk et al., 2019. Potential synergies of drop-in biofuel production with further coprocessing at oil refineries. *Biofuels Bioproducts & Biorefining* 13: 760–775. DOI: 10.1002/bbb.1974.

32. Process Safety Integrity *Refining Incidents;* accessed Feb–Mar 2021; available for download at: <u>https://processsafetyintegrity.com/incidents/industry/refining</u>.

33. BAAQMD *Causal Analysis Reports for Significant Flaring;* Bay Area Air Quality Management District: San Francisco, CA. Reports submitted by Phillips and former owners of the Phillips 66 San Francisco Refinery at Rodeo, and submitted by Marathon and formers owners of the Marathon Martinez Refinery, pursuant to BAAQMD Regulation 12-12-406.

34. Karras and Hernandez, 2005. *Flaring Hot Spots: Assessment of episodic local air pollution associated with oil refinery flaring using sulfur as a tracer;* Communities for a Better Environment: Oakland and Huntington Park, CA.

35. Ezersky, 2006. *Staff Report: Proposed Amendments to Regulation 12, Miscellaneous Standards of Performance, Rule 12, Flares at Petroleum Refineries;* 3 March 2006. Planning and Research Division, Bay Area Air Quality Management District: San Francisco, CA.

36. Sigma-Aldrich, 2021. Safety Data Sheet: Hydrogen Sulfide; Merck KGaA: Darmstadt, DE

37. SLOC, 2014. *Phillips 66 Company Rail Spur Extension and Crude Unloading Project Revised Public Draft Environmental Impact Report;* prepared for San Luis Obispo County (SLOC) by Marine Research Specialists (MRS). October 2014. SCH# 2013071028. Excerpt including title page and project description.

38. CEC, 2021a. *Crude Oil Sources for California Refineries;* California Energy Commission: Sacramento, CA.

39. DOGGR, 2017. 2017 Report of California Oil and Gas Production Statistics; California Department of Conservation, Division of Oil, Gas, & Geothermal Resources: Sacramento, CA.

40. Perkins, 2019. Phillips 66 correspondence regarding Bay Area Air Quality Management District Permit Application No. 25608.

41. ACOE, 2019, Draft Integrated General Reevaluation Report and Environmental Impact Statement, San Francisco Bay to Stockton, California Navigation Study. Army Corps of Engineers: Jacksonville, FL. EIS and EIS Appendix D.

42. SBC, 2021. *ExxonMobil Interim Trucking for SYU Phased Restart Project Status, Description, Timeline;* Santa Barbara County Department of Planning & Development. Website page accessed 18 November 2021.

43. BOEM, 2021a. U.S. Bureau of Ocean Energy Management. *Pacific Production;* data for Pacific OCS Region data, 1996–2021. https://www.data.boem.gov/Main/PacificProduction.aspx#ascii.

44. BOEM, 2021b. U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement/Bureau of Ocean Energy Management, Pacific OCS Region. Map updated May 2021.

45. CARB, various years. *Calculation of Crude Average Carbon Intensity Values;* California Air Resources Board: Sacramento, CA. *In* LCFS Crude Oil Life Cycle Assessment, Final California Crude Average Carbon Intensity Values. Accessed October 2021. https://ww2.arb.ca.gov/resources/documents/lcfs-crude-oil-life-cycle-assessment.